Index shift - sequences and series, Mathematics

Assignment Help:

Index Shift - Sequences and Series

The main idea behind index shifts is to start a series at a dissimilar value for whatever the reason (and yes, there are legitimate reasons for doing that).

Consider the following series,

992_Index Shift - Sequences and Series 1.png

Assume that for some reason we wanted to start this series at n = 0 , but we did not wish to change the value of the series. The meaning of this is that we can't just change the n = 2 to n = 0 as this would add in two new terms to the series and so change its value.

Carrying out an index shift is a quite simple process to do. We'll start by describing a new index, say i, as follows,

i = n - 2

Here now, when n = 2, we will get i = 0 . Notice as well that if n = ∞ then i = ∞- 2 = ∞ , so only the lower limit will alter here. Next, we can solve this for n to get,

n = i + 2

We can now totally rewrite the series in terms of the index i in place of the index n just by plugging in our equation for n in terms of i.

717_Index Shift - Sequences and Series 2.png

To end the problem out we'll remind that the letter we employed for the index doesn't matter and thus we'll change the final i back into an n to get,

1999_Index Shift - Sequences and Series 3.png

To induce you that these really are similar summation let us write out the first couple of terms for each one of them,

1289_Index Shift - Sequences and Series 4.png

Thus, sure enough the two series do have exactly similar terms.

In fact there is an easier way to do an index shift. The method described above is the technically right way of doing an index shift. Though, notice in the above instance we decreased the initial value of the index by 2 and all the n's in the series terms increased by 2 also. This will all time work in this way.  If we decrease the initial value of the index by a set amount as compared to all the other n's in the series term will increase by similar amount. Similarly, if we increase the initial value of the index by a set amount, after that all the n's in the series term will decrease by similar amount.


Related Discussions:- Index shift - sequences and series

Linear equations, Linear Equations We'll begin the solving portion of ...

Linear Equations We'll begin the solving portion of this chapter by solving linear equations. Standard form of a linear equation: A linear equation is any equation whi

What are the three sides of a right triangle, What are the Three Sides of a...

What are the Three Sides of a Right Triangle? Each side of a right triangle can be labeled opposite, adjacent, or hypotenuse, based on its relationship to the right angle and o

Equal matrices - linear algebra and matrices, I need assignment help for Eq...

I need assignment help for Equal Matrices. can you please define Equal Matrices?

Binomial mathematical properties, Binomial Mathematical Properties 1. ...

Binomial Mathematical Properties 1. The expected or mean value = n × p = np Whereas; n = Sample Size p = Probability of success 2. The variance = npq Whereas; q =

Profit and loss, a shopkeeper buys two cameras at the same price . he sells...

a shopkeeper buys two cameras at the same price . he sells one camera at a profit of 18% and the other at a price of 10% less than the selling price of the first camera. find his p

What is this distance expressed in scientific notation, The distance from t...

The distance from the earth to the moon is approximately 240,000 miles. What is this distance expressed in scientific notation? To convert to scienti?c notation, place a decima

G .E matrix, using the g.e matrix, how can you turn an unattractive product...

using the g.e matrix, how can you turn an unattractive product to be attractive

Eigenvalues and eigenvectors, If you find nothing out of this rapid review ...

If you find nothing out of this rapid review of linear algebra you should get this section.  Without this section you will not be capable to do any of the differential equations wo

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd