Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Q. Illustration to demonstrate design of sequential circuits?
Let us take an illustration to demonstrate above process. Suppose we want to design 2-bit binary counter employing D flip-flop. Circuit goes through repeated binary states 00, 01, 10 and 11 whenever external input X = 1 is applied. State of circuit won't change when X = 0. State table and state diagram for this is displayed in figure. Although how do we make the state diagram? Please note number of flip-flops- 2 in our illustration as we are designing 2 bits counter. Different states of two bit input will be 00 01 10 and 11. These are displayed in circle. The arrow denotes transitions on an input value X. For illustration when counter is in state 00 and input value X=0 happens counter remains in 00 state. Therefore loop back on X= 0. But on encountering X=1 counter moves to state 01. Similarly in all other states similar transition happen. For making state table consider excitation table of D flip-flop given in figure (c).
Present state of two flip-flops and subsequent states of flip-flops are put into the table with any input value. For illustration if present state of flip-flops is 01 and input value is 1 then counter will move to state 10. Notice these values in fourth row of values in state table (figure (a) Or we can write as below:
This denotes flip-flop A has moved from state clear to set. As we are constructing the counter using D flip-flop the main question is what would be input DA value of A flip-flop which allows this transition which is Q(t) = 0 to Q(t+1) =1 possible for A flip flop. On checking excitation table for D Flip-flop we find value of D input of a flip-flop (known as DA in this illustration) would be 1. Similarly B flip-flop have a transition Q(t) = 1 to Q(t+1)=0 so DB, would be 0. Therefore notice the values of flip-flop inputs DA and DB. (Row 3).
The probabilistic Hough transform uses random sampling instead of an accumulator array. In this approach the number of random samples r, is not specified in the OpenCV call, but
Instruction Cycle The instruction cycle consists of a series of steps required for the execution of an Instruction in a program. A distinctive instruction in a program is compo
diagrams of picket fence problem
Explain about the organisations use in EDI. Organisations, which are use Electronic Data Interchange. Extensive users of Electronic Data Interchange (EDI) include: BHS:
Fuzzy Logic: In the logics we are here described above, what we have been concerned with truth: whether propositions and sentences are true. Moreover, with some natural langua
pls give the list of adaptive mechanism in artificial immune system
Ask qurecurrion for short noteestion
#questifind core radius for single mode operation at 850nm in SI fibre with n1=1.480 & n2=1.47 what is NAon..
Local minima - sigmoid units: Alternatively in addition to getting over some local minima where the gradient is constant in one direction or adding momentum will increase the
c code for inverted index implementation
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd