Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
History - Field-Effect Transistor:
The principle of field-effect transistors was very first patented by Julius Edgar Lilienfeld in the year 1925 and by Oskar Heil in the year 1934, but practical semi-conducting devices (the JFET, junction gate field-effect transistor) was just only developed much later after the transistor effect was seen and described by the team of William Shockley at Bell Labs in the year 1947. The MOSFET (metal-oxide-semiconductor field-effect transistor) that largely superseded the JFET and had a more profound effect on electronic development was very first planned by Dawon Kahng in 1960.
Terminals
Figure: Cross section of an n-type MOSFET
All FETs comprises a gate, drain, and source terminal which correspond roughly to the base, collector, and emitter of BJTs. Apart from the JFET, all FETs as well have a fourth terminal called the body, base, bulk, or substrate. This fourth terminal works to bias the transistor into operation; it is seldom to make non-trivial make use of the body terminal in circuit designs, but its existence is significant when setting up the physical layout of an integrated circuit. The size of the gate, length L in the figure, is the distance in between the source and drain. The width is the extension of the transistor, in the figure perpendicular to the cross section. Commonly the width is much larger than as compared to length of the gate. A gate length of 1µm limits the upper frequency to approximately 5 GHz, 0.2µm to approximately 30 GHz.
Q. Figure shows the mod-8 counter which counts from 010 to 710 before resetting. Explain the operation of the counter and sketch the timing diagram.
how emitter current equal to collector current
I am building a testing device for the purpose of screening a 5801 BiMOS 8 BIT Parallel-input Latched Driver, I need help with input circuit to drive all 8 outputs one at a time. M
Explain Diffusion. Diffusion : Though, the mobility of the carriers in a semiconductor is greater than the electrons in metals, the conductivity in the former is much less t
The five stages of DLX pipeline is:- ? Operand location ? Number of explicit operands per instruction ? Operand storage in the CPU ? Operations ? Type and size of o
The following data apply to a 100-kW, 250-V, six-pole, 1000-r/min long-shunt compound generator: no-load rotational losses 4000 W, armature resistance at 75°C = 0.015 , series-fie
Mode1 When the positive pulse from PWM is applied to the transistor Q shown in figure it gets turned on. In this condition current flows through transistor Q and.
Q For a parallel-plate capacitor with plates of area A m 2 and separation d m in air, the capacitance in farads may be computed from the approximate relation Compute the a
what is the application of simple harmonic motion in electrical engineering?
application of newtron therome
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd