Green –beard strategy, Game Theory

Assignment Help:

1  A, Explain how a person can be free to choose but his or her choices are casually determined by past event

2  B , Draw the casual tree for newcomb's problem when Eve can't perfectly detect Adam's casual history. The probabilities of Eve rightly or wrongly detecting whether adam will later open only the black box instead of opening both boxes are respectively denoted r and w. recal that L denotes the smaller amount of money always in the clear box and M denotes the larger amount of money that eve might might put in side the opaque box  E A

C, Derive the two expected payoffs formulas E A (1B / r, w) and E A ( (2B /r,w) and use them to solve for another formula that equals the smallest value of M (denoted M*) required in order for Adam's expected payoff from opening only the opaque box to exceed that from opening both boxes by a multiple of as least ( a sign that looks like derivative)  L     what is the resulting formula for M*. finally suppose (L, sign that looks like derivative I don't know   )  = (300, 95), (r,w)=(.58, .43) and use the formula for M* to calculate the numerical value of M* for this case

 2.   A, Suppose a CD player player tries to detect whether its partner is C player instead of a DD player by looking for external signals that are at least as typical for DD players than DD players than for cd players draw a diagram tp explain how two boundariesb.L and bu  are optimally determined by the minimum likehood ration Lmin. Show on the diagram where it is optimal to respond C versus D. Also explain what happens to the boundries when detection becomes more cautious by raising the minimum likehood ration

b. What is meaning of the LDD detection strategy

c. What is the main problem with the green -beard strategy? Explain how the LDD strategy overcomes this problem

 3. A. If CD players are able to use the LDD strategy better than pure chance then explain what happens to the signal reliability ration as a CD player detects more cautiously

 b. Assume a population contains either CD ot DD players where each player is randomly matched with partner taken from the whole population. Also assume the fear and greed payoff differences are equal. What are the expected payoff formulas for CD players  [ denoted  E(DD/x CD  ) ]  depending on the fraction of CD players in the population, denoted x CD  \

c. Use expected payoff formulas of part C to algebraically derive an inequality for the signal reliability ration r/w that determines when the CD  players will outperform the DD players. Thenuse this inequality with Part A, to explain how CD players can always outperform DD players starting from any positive initial fraction of CD players  x CD  > 0.

 4, A. Use the inequality derived for part C question 3; to obtain an inequality required x *CD  = 1 to remain stable against DD invaders. Also draw the ROC diagram discussed in class for visually representing this stability inequality

B. Explain how a diagram similar to that shown in part A can be used to derive a prediction of what will happen to the CD players equilibrium probability of cooperating if the fear and greed pay off difference decrease relative to the cooperation payoff difference

C. Again explain how a diagram similar to that shown in Part A can be used to derive a prediction of what will happen to the CD player equilibrium probability of cooperating if they exchange email messages instead of talking talk face to face


Related Discussions:- Green –beard strategy

Asynchrony, In a repeated game it is often unspecified that players move co...

In a repeated game it is often unspecified that players move concurrently at predefined time intervals. However, if few players update their policies at different time intervals, t

Game 5 all-pay acution of $10, GAME 5 All-Pay Acution of $10 Everyone ...

GAME 5 All-Pay Acution of $10 Everyone plays. Show the students a $10 bill, and announce that it is the prize; the known value of the prize guarantees that there is no winer’s

Hawk-dove game , Scenario The hawk-dove game is additionally commonly ca...

Scenario The hawk-dove game is additionally commonly called the sport of chicken. 2 hooligans with one thing to prove drive at one another on a slender road. The primary to swer

Determine nash equilibria, Consider the electoral competition game presente...

Consider the electoral competition game presented in Lecture 6. In this game there are two candidates who simultaneously choose policies from the real line. There is a distribution

Determine the linear regression function of y on x, QUESTION ONE. (a) Th...

QUESTION ONE. (a) The probability that, a bomber hits a target on a bombing mission is 0.70 Three bombers are sent to bomb a particular target. (i)  What is the probabilit

Evolutionary games, How much time you want to spend on this material willde...

How much time you want to spend on this material willdepend on the focus of your course. For many social sciencecourses, a general exposure to the ideas, based on a quick runthroug

Proxy bidder , A proxy bidder represents the interests of a bidder not phys...

A proxy bidder represents the interests of a bidder not physically gift at the auction. Typically, the bidder can inform his proxy of the most quantity he's willing to pay, and als

Repeated game, When players interact by enjoying an identical stage game (s...

When players interact by enjoying an identical stage game (such because the prisoner's dilemma) varied times, the sport is termed a repeated game. not like a game played once, a re

Volunteer''s dilemma , Scenario As described by William Poundstone, imag...

Scenario As described by William Poundstone, imagine that you just notice that electricity has gone out for your entire neighborhood. the electrical company can send somebody to

Simultaneous game, A simultaneous game is one during which all players buil...

A simultaneous game is one during which all players build choices (or choose a strategy) while not information of the methods that are being chosen by different players. Although t

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd