Fundamental theorem of calculus, part i, Mathematics

Assignment Help:

Fundamental Theorem of Calculus, Part I

As noted through the title above it is only the first part to the Fundamental Theorem of Calculus.

The first part of this theorem us how to differentiate assured types of definite integrals and this also tells us regarding the very close relationship among integrals & derivatives.

Fundamental Theorem of Calculus, Part I

If  f ( x )is continuous on [a,b] then,

                                           g ( x ) = ∫ax f (t ) dt

is continuous on [a,b] and this is differentiable on ( a, b ) and that,

                                             g ′ ( x ) = f ( x )

An alternate notation for derivative portion of this is following,

531_Fundamental Theorem.png

Example   Differentiate following.

2254_Fundamental Theorem1.png

 Solution

This one needed a little work before we can use the Fundamental Theorem of Calculus. The primary thing to notice is that the FToC needs the lower limit to be a constant & the upper limit to be the variable.  Therefore, by using a property of definite integrals we can interchange the limits of the integral we only have to remember to add in a minus sign after we do that.  Doing this we get,

293_Fundamental Theorem2.png

The next thing to notify is that the FToC also need an x in the upper limit of integration and we've got x2. To do this derivative we're going to required the following version of the  chain rule.

                           d/dx ( g (u )) = d/dx ( g (u ))( du/dx)            where u = f ( x )

Thus, if we let u= x2 we utilizes the chain rule to get,

1429_Fundamental Theorem3.png

                          =  -d/du ∫u1    (t4+1)/(t2+1)dt                                  where u = x2

                        = (u4+1)/(u2+1) (2x)

                         = -2 x ((u4+1)/(u2+1))

The last step is to get everything back in terms of x.

1448_Fundamental Theorem4.png

= -2x (( x2 )4  + 1)/ (x2 )2  + 1

= -2x(( x8+ 1)/ (x4+ 1)


Related Discussions:- Fundamental theorem of calculus, part i

Geometric mean-geometric progression, Geometric mean - It is a measure ...

Geometric mean - It is a measure of central tendency normally utilized to measure industrial increases rates. - It is explained as the nth root of the product of 'n' observa

Find the z-score, For a population with a mean of μ=80 and a standard devia...

For a population with a mean of μ=80 and a standard deviation of o=12, find the z-score corresponding to each of the following samples. a.    M=83 for a sample of n=4 scores b.

What is exponents values, What is Exponents values? Exponents were inve...

What is Exponents values? Exponents were invented as a quick way to show that you are multiplying a number by itself several times. It's too much trouble to write something

Strategy for series - sequences and series, Strategy for Series Now t...

Strategy for Series Now that we have got all of our tests out of the way it's time to think regarding to the organizing all of them into a general set of strategy to help us

How many more cm are required to reach the average monthly, Thomas is remai...

Thomas is remaining track of the rainfall in the month of May for his science project. The first day, 2.6 cm of rain fell. On the second day, 3.4 cm fell. On the third day, 2.1 cm

Arc Length and Sector Area, how do i find the diameter of a circle if i hav...

how do i find the diameter of a circle if i have the shaded sectors area of 263.76 and the central angle of that circle is 210 degrees?

Whats this, how do you determine if a graph has direct variation

how do you determine if a graph has direct variation

Relative measures of dispersion-illustration, Illustration 2 In a ...

Illustration 2 In a described farm located in the UK the average salary of the employees is £ 3500 along with a standard deviation of £150 The similar firm has a local

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd