Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
To see this, note that if there are any cycles in the Myhill graph of A then L(A) will be infinite, since any such cycle can be repeated arbitrarily many times. Conversely, if the Myhill graph is acyclic, then no path from x to x can be longer than card(Σ) + 2, since otherwise some node would have to occur at least twice in the path.
The question of finiteness of L(A), then, can be reduced to the question of acyclicity of the corresponding Myhill graph. And we established that there is an algorithm for testing acyclicity of graphs in Algorithms and Data Structures. Our algorithm for deciding finiteness of L(A) just interprets A as a graph and calls the algorithm for deciding acyclicity as a subroutine.
DEGENERATE OF THE INITIAL SOLUTION
Lemma 1 A string w ∈ Σ* is accepted by an LTk automaton iff w is the concatenation of the symbols labeling the edges of a path through the LTk transition graph of A from h?, ∅i to
(c) Can you say that B is decidable? (d) If you somehow know that A is decidable, what can you say about B?
Ask question #Minimum 100 words accepte
Suppose A = (Q,Σ, T, q 0 , F) is a DFA and that Q = {q 0 , q 1 , . . . , q n-1 } includes n states. Thinking of the automaton in terms of its transition graph, a string x is recogn
Different types of applications and numerous programming languages have been developed to make easy the task of writing programs. The assortment of programming languages shows, dif
A finite, nonempty ordered set will be called an alphabet if its elements are symbols, or characters. A finite sequence of symbols from a given alphabet will be called a string ove
Computer has a single FIFO queue of ?xed precision unsigned integers with the length of the queue unbounded. You can use access methods similar to those in the third model. In this
I want a proof for any NP complete problem
Theorem (Myhill-Nerode) A language L ⊆ Σ is recognizable iff ≡L partitions Σ* into ?nitely many Nerode equivalence classes. Proof: For the "only if" direction (that every recogn
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd