Finite difference method, Mathematics

Assignment Help:

2014_finite.png

Two reservoirs of equal cross sectional areas (315 m2) and at equal elevations are connected by a pipe of length 20 m and cross sectional area 3 m2. The reservoir on the left (reservoir 1) is filled with a liquid of mass density 1000 kg/m3. The pressure at the bottom of reservoir 1 (that is, p1) is 39000 N/m2. The second reservoir and the connecting pipe are initially empty. The acceleration due to gravity is 9.8 m/s2.

The following assumptions apply. One can ignore the effects of friction, form losses and the elevation differences along the path of the connecting pipe. The fluid is incompressible and inviscid. Flow through the connecting pipe is started by the instantaneous, full opening of the valve at the bottom of reservoir 1.

Using the finite difference method, write a Fortran program that predicts the behavior of the system for 200 seconds following the opening of the valve. Assume a timestep size of

0.1 sec. The program must read the above data (with the exception of the acceleration due to gravity and problem duration time of 200 seconds) from an input file and generate an output file. Run the following four cases;

a) one for the above data,

b) identical to case (a) but with the cross-sectional area of the second reservoir, A2, modified to 200 m2,

c) identical to case (a) but with the length of the connecting pipe, L, modified to 40 m, and

d) identical to case (a) but with the cross sectional flow area of the connecting pipe, Ap, modified to 6 m2.

The output file must include the following information:

Modeling and Simulation for Mechanical and Nuclear Engineers -

  • the date and time of the run,
  • a summary of the input data values, including units of measurement,
  • the maximum value of the volumetric flow rate, qv, through the connecting pipe(m3/s),
  • the maximum depths of the water in meters in each reservoir during the transient,
  • the maximum pressure at the exit of each reservoir (p1 and p2) during the transient (N/m2), and
  • a table of the volumetric flow rate through the connecting pipe (m3/s), the depth of water in each reservoir in meters, and the pressures p1 and p2 as a function of time.

The deliverables are:

  • the Fortran source code listing,
  • the input and output files for the four cases, and
  • the following plots as a function of time for each case:

the volumetric flow rate through the connecting pipe,

a comparison of the values of p1 and p2, and

a comparison of the fluid depth in each reservoir.

Plots should have appropriately labeled axes. The y-axis parameter value may be normalized if you wish.

In the text of the transmitting email answer the following:

1. explain the differences in the results of the four cases in terms of changes to the system's fluid capacitance Cf and fluid inductance If, and

2. Explain how this system relates to that of the unsteady flow in a U-tube discussed in class. For example, all else being equal, does the period of oscillation of the liquid in this system, like that of the U-tube system, vary as the square root of the length of the connecting pipe? Back up your answer either by reference to the required cases or to additional cases that you run.


Related Discussions:- Finite difference method

Limits at infinity, Limits At Infinity, Part I : In the earlier section w...

Limits At Infinity, Part I : In the earlier section we saw limits which were infinity and now it's time to take a look at limits at infinity.  Through limits at infinity we mean

Muptipucation, if 2+2=4 what does two times two epual?

if 2+2=4 what does two times two epual?

Definition of a function, Definition of a Function Now we need to move...

Definition of a Function Now we need to move into the second topic of this chapter.  Before we do that however we must look a quick definition taken care of.

If 1/x+2, if 1/x+2, 1/x+3, 1/x+5 are in AP find x Ans 1/x+2,1/x+3, 1/x+5...

if 1/x+2, 1/x+3, 1/x+5 are in AP find x Ans 1/x+2,1/x+3, 1/x+5 are in AP find x. 1/x+3 - 1/x+2 = 1/x+5-1/x+3 =>  1/x 2 +5x+6  = 2/ x 2 +8x +15 =>  On solving we get x

Properties of triangle, In triangle ABC if angle B = 90 degrees what is the...

In triangle ABC if angle B = 90 degrees what is the value Tan A/2 in terms of its sided? Solution) tanA=c/b let tan(A/2)=x 2x/(1-x 2 )=c/b,solve for x

How many solutions are there for differential equation, If a differential e...

If a differential equation does have a solution how many solutions are there? As we will see ultimately, this is possible for a differential equation to contain more than one s

Division problem, Raul has 56 bouncy balls. He puts three times as many bal...

Raul has 56 bouncy balls. He puts three times as many balls into red gift bags as he puts into green gift bags. If he puts the same number of balls in each bag, how many balls does

Sqares, Recently I had an insight regarding the difference between squares ...

Recently I had an insight regarding the difference between squares of sequential whole numbers and the sum of those two whole numbers. I quickly realized the following: x + (x+1)

Rates of change and tangent lines in limits, Rates of Change and Tangent Li...

Rates of Change and Tangent Lines : In this section we will study two fairly important problems in the study of calculus. There are two cause for looking at these problems now.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd