Finite difference method, Mathematics

Assignment Help:

2014_finite.png

Two reservoirs of equal cross sectional areas (315 m2) and at equal elevations are connected by a pipe of length 20 m and cross sectional area 3 m2. The reservoir on the left (reservoir 1) is filled with a liquid of mass density 1000 kg/m3. The pressure at the bottom of reservoir 1 (that is, p1) is 39000 N/m2. The second reservoir and the connecting pipe are initially empty. The acceleration due to gravity is 9.8 m/s2.

The following assumptions apply. One can ignore the effects of friction, form losses and the elevation differences along the path of the connecting pipe. The fluid is incompressible and inviscid. Flow through the connecting pipe is started by the instantaneous, full opening of the valve at the bottom of reservoir 1.

Using the finite difference method, write a Fortran program that predicts the behavior of the system for 200 seconds following the opening of the valve. Assume a timestep size of

0.1 sec. The program must read the above data (with the exception of the acceleration due to gravity and problem duration time of 200 seconds) from an input file and generate an output file. Run the following four cases;

a) one for the above data,

b) identical to case (a) but with the cross-sectional area of the second reservoir, A2, modified to 200 m2,

c) identical to case (a) but with the length of the connecting pipe, L, modified to 40 m, and

d) identical to case (a) but with the cross sectional flow area of the connecting pipe, Ap, modified to 6 m2.

The output file must include the following information:

Modeling and Simulation for Mechanical and Nuclear Engineers -

  • the date and time of the run,
  • a summary of the input data values, including units of measurement,
  • the maximum value of the volumetric flow rate, qv, through the connecting pipe(m3/s),
  • the maximum depths of the water in meters in each reservoir during the transient,
  • the maximum pressure at the exit of each reservoir (p1 and p2) during the transient (N/m2), and
  • a table of the volumetric flow rate through the connecting pipe (m3/s), the depth of water in each reservoir in meters, and the pressures p1 and p2 as a function of time.

The deliverables are:

  • the Fortran source code listing,
  • the input and output files for the four cases, and
  • the following plots as a function of time for each case:

the volumetric flow rate through the connecting pipe,

a comparison of the values of p1 and p2, and

a comparison of the fluid depth in each reservoir.

Plots should have appropriately labeled axes. The y-axis parameter value may be normalized if you wish.

In the text of the transmitting email answer the following:

1. explain the differences in the results of the four cases in terms of changes to the system's fluid capacitance Cf and fluid inductance If, and

2. Explain how this system relates to that of the unsteady flow in a U-tube discussed in class. For example, all else being equal, does the period of oscillation of the liquid in this system, like that of the U-tube system, vary as the square root of the length of the connecting pipe? Back up your answer either by reference to the required cases or to additional cases that you run.


Related Discussions:- Finite difference method

Kurtosis-measure of central tendency, Kurtosis - It is a concept, whic...

Kurtosis - It is a concept, which refers to the degree of peakedness of a described frequency distribution. The degree is generally measured along with reference to general di

What it means to count-learning to count, What do we understand by "being a...

What do we understand by "being able to count"? Think about the following situation before you answer. Example 1: Three year-old Mini could recite numbers from I to 20 in the co

What was brian''s total commission on these three sales, Brian is a real es...

Brian is a real estate agent. He forms a 2.5% commission on each sale. During the month of June he sold three houses. The houses sold for $153,000, $299,000, and $121,000. What was

Trigonometry, Prove: cotA/2.cotB/2.cotC/2 = cotA/2+cotB/2+cotC/2

Prove: cotA/2.cotB/2.cotC/2 = cotA/2+cotB/2+cotC/2

Why did the two dice game become more difficult?, The following exercises m...

The following exercises may help you to look more closely at the activities done above. E1) Why did the two dice game become more difficult? E2) Do you find the activities in

Grouping-categories of situations requiring division , Grouping - situatio...

Grouping - situations in which we need to find the number of portions of a given size which can be obtained from a given quantity. (e.g., if there are 50 children in a class and t

Show that p ( x ) = 2 x3 - 5x2 -10 x + 5 intermediate value , Example   Sh...

Example   Show that p ( x ) = 2 x 3 - 5x 2 -10 x + 5 has a root somewhere in the interval [-1,2]. Solution What we're actually asking here is whether or not the function wi

Find a common factor of the numerator and denominator, Q. Find a common fac...

Q. Find a common factor of the numerator and denominator? Ans. There's only one key step to simplifying (or reducing) fractions: find a common factor of the numerator and

Fundamental theorem of calculus, Fundamental Theorem of Calculus, Part I ...

Fundamental Theorem of Calculus, Part I As noted through the title above it is only the first part to the Fundamental Theorem of Calculus. The first part of this theorem us

Show that of all right triangles inscribed in a circle, Show that of all ri...

Show that of all right triangles inscribed in a circle, the triangle with maximum perimeter is isosceles.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd