Arc length - applications of integrals, Mathematics

Assignment Help:

Arc Length - Applications of integrals

In this part we are going to look at determining the arc length of a function.  As it's sufficiently easy to derive the formulas that we'll utilize in this section we will derive one of them and leave the other to you to derive.

We want to find out the length of the continuous function

y = f (x) on the interval [a, b].

Primarily we'll need to find out the length of the curve. We'll do this by dividing the interval up into n equal subintervals each of width Δx and we'll indicate the point on the curve at each point by Pi. We can then estimate the curve by a series of straight lines connecting the points. Now Here is a sketch of this situation for n = 9.

132_Arc Length - Applications of integrals 4.png

Now indicate the length of every line segments by then be approximately, |Pi -1  Pi|  and the length of the curve will

206_Arc Length - Applications of integrals 3.png

and after that we can obtain the exact length by taking n larger and larger.  Alternatively, the exact length will be,

1974_Arc Length - Applications of integrals 2.png

Now here, let's get a good grasp on the length of each of these line segments. Very first, on each segment let's illustrate Δyi = yi - yi-1 = f (xi) - f (xi-1) . After that we can calculate directly the length of the line segments like this:

|Pi-1 Pi| = √ ((xi - xi-1)2 + (yi - yi-1)2)

= √(Δx2 +Δy2i).

By using the Mean Value Theorem we make out that on the interval [xi-1, xi] there is a point x*i that is why,

F (xi) - f (xi-1)

= f' (x*i) (xi - xi-1)

Δyi= f' (x*i)Δx

Hence, the length can now be written as,

|Pi-1 Pi| = √ ((xi - xi-1)2 + (yi - yi-1)2)

= √(Δx2 +[f' (xi*)]2 Δx2 )

= √ (1 + [f' (xi*)]Δx)

The exact length of the curve is then,

2388_Arc Length - Applications of integrals 1.png

Though, by using the definition of the definite integral, this is nothing much more than,

L - ∫ba√ (1+[f' (x)]2 dx)

A little more suitable notation (according to me) is the following.

L = ∫ba √ (1 + (dy/dx)2 dx)

In a identical way we can also derive a formula for x = h(y) on [c,d]. This formula is,

L - ∫bc√ (1+[h' (y)]2 dy)

bc √ (1 + (dx/dy)2 dy)

Once Again, the second form is possibly a much more convenient.

Note: the variation in the derivative under the square root! Don't get so confused. With one we distinguish with respect to x and with the other we distinguish with respect to y. One way to maintain the two straight is to note that the differential in the "denominator" of the derivative will match up along with the differential in the integral. This is one of the causes why the second form is a little much more suitable.

Previous to we work any instance we need to make a small change in notation. In place of having two formulas for the arc length of a function we are going to decrease it, in part, to a single formula. From this point on we are going to make use of the following formula for the length of the curve.


Related Discussions:- Arc length - applications of integrals

Solid mensuration, given dimensions: 130cm, 180cm, and 190cm is to be divid...

given dimensions: 130cm, 180cm, and 190cm is to be divided by a line bisecting the longest side shown from its opposite vertex. what''s the area adjacent to 180cm? ;

What is the net surface area to be painted, You are painting the surface of...

You are painting the surface of a silo that has a diameter of 16 ft and height of 50 ft. What is the net surface area to be painted? Consider the top of the silo is  1/2 a sphere

Activities to develop ability to classify, Let us now look at some activiti...

Let us now look at some activities that can be organised with preschoolers to develop their ability to classify. 1. You could start by giving children different materials to pla

Infinite series, all properties, formulas of infinite series

all properties, formulas of infinite series

Prove that a simple graph is connected, Prove that a simple graph is connec...

Prove that a simple graph is connected if and only if it has a spanning tree.    Ans: First assume that a simple graph G has a spanning  tree T.  T consists of every node of G.

Linear equation, tens digit of a 2-digit number is twice its unit digit. If...

tens digit of a 2-digit number is twice its unit digit. If the sum of the digit is 12, find the number.

Analyze the dynamic path of pork prices, A well-known simple model, applica...

A well-known simple model, applicable for analysing boom-bust cycles in agriculture, but extendable to analysing boom-bust cycles in many different areas of economics is the hog cy

Calculate percentage of increasing customer, Coastal Cable had 1,440,000 cu...

Coastal Cable had 1,440,000 customers within January of 2002. During the first half of 2002 the company launched a large advertising campaign. Through the end of 2002 they had 1,80

Math 100, introduction to decimals

introduction to decimals

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd