Find the volume of a cylinder of radius r, Mathematics

Assignment Help:

Find the volume of a cylinder of radius r and height h.

Solution : Here, as we mentioned before starting this illustration we actually don't require using an integral to get this volume, but it is a good illustration to exemplify the method we'll require to use for these kinds of problems.

We will start off with the diagram of the cylinder below.

84_More Volume Problems 1.png

We will center the cylinder on the x-axis and the cylinder will begin at x = 0 and end at x = h as demonstrated. Remember that we are only choosing this exact set up to find an integral in terms of x and to create the limits nice to deal along with. There are various other orientations which we could use.

What we require now is to find a formula for the cross-sectional area at any x. During this case the cross- sectional area is constant and it will be a disk of radius r. Thus, for any x we'll have the subsequent cross-sectional area,

A (x)= pr2

After that the limits for the integral will be as 0 ≤ x ≤ h as i.e. the range of x wherein the cylinder lives. Now there is the integral for the volume,

1236_More Volume Problems 2.png

Therefore, we find the expected formula.

And, recall we are using r to classify the radius of the cylinder. Whereas r can clearly take various values this will never change once we begin the problem. Cylinder's radius does not change in the middle of a problem and therefore as we move along the center of the cylinder that is the x- axis, r is a fixed number and was not change. Conversely, this is a constant which will not change when we change the x. Thus, as we integrated with respect to x the r will be a constant as much as the integral is associated. The r can after that be pulled out of the integral as demonstrated, though that's not needed, we just did this to make the point.  At this point we are only integrating dx and we identify how to do that.

While we evaluate the integral keep in mind that the restrictions are x values and therefore we plug in the x and NOT the r.  Again, keep in mind that r is only a letter which is being used to represent the radius of the cylinder and, once we start the integration, is assumed to be a fixed constant.

Since observed before we started this illustration if you are having trouble along with the r just think of what you would do whether there was a 2 there in place of an r. In this problem, as we're integrating with respect to x, both the 2 and the r will behave in similar way. Note though that you must NEVER really replace the r with a 2 as that WILL guide to a wrong answer.  You must just think of what you'd do IF the r was 2.

Therefore, to work these problems we will first require finding a sketch of the solid along with a set of x and y axes to assist us notice what's going on. At the extremely least we will require the sketch to find the limits of the integral, but we will frequently require this to see just what the cross-sectional area really is. Once we have the draw we'll require to find out a formula for the cross-sectional area and after that do the integral.


Related Discussions:- Find the volume of a cylinder of radius r

Number system, NATURAL NUMBERS The numbers 1, 2, 3, 4.... Are called as...

NATURAL NUMBERS The numbers 1, 2, 3, 4.... Are called as natural numbers, their set is shown by N. Hence N = {1, 2, 3, 4, 5....} WHOLE NUMBERS The numbers 0, 1, 2, 3, 4

Study market, what toold we need to study market

what toold we need to study market

what fill amount are they searching, Brewery has 12 oz bottle filling mach...

Brewery has 12 oz bottle filling machines.  Amount poured by machine is normal distribution mean 12.39 oz  SD 0.04 oz. Company is interested in in reducing the amount of extra beer

Area of regular polygon, Suppose a  regular polygon , which is an N-sided w...

Suppose a  regular polygon , which is an N-sided with equal side lengths S and similar angles at each corner. There is an  inscribed circle  to the polygon that has center C and ba

Linear equations, Linear Equations We'll begin the solving portion of ...

Linear Equations We'll begin the solving portion of this chapter by solving linear equations. Standard form of a linear equation: A linear equation is any equation whi

Question, If X = {a, e, i, o, u} and Y = {a, b, c, d, e}, then what is Y - ...

If X = {a, e, i, o, u} and Y = {a, b, c, d, e}, then what is Y - X ?

The bionomial theorem for rational index, use the bionomial theorem to expa...

use the bionomial theorem to expand x+2/(2-X)(WHOLE SQUARE 2)

Solve -10 cos(3t )= 7 on [-2, Solve -10 cos(3t )= 7 on [-2,5]. Solution...

Solve -10 cos(3t )= 7 on [-2,5]. Solution Let's first get the inverse cosine portion of this problem taken care of. cos(3 t )= -  7/10            ⇒     3t = cos -1 ( - 7

Terminology of polynomial, Terminology of polynomial Next we need to ge...

Terminology of polynomial Next we need to get some terminology out of the way. Monomial polynomial A monomial is a polynomial which consists of exactly one term.

What is permutations explain with examples, What is Permutations explain wi...

What is Permutations explain with examples? Each arrangement of a set of elements is called a permutation. In other words, every possible way (order) of writing a group of lett

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd