Find the normalization transformation, Computer Graphics

Assignment Help:

Illustration: Find the normalization transformation N that uses the rectangle W (1, 1), X (5, 3), Y (4, 5) and Z (0, 3) as a window and also the normalized device screen like the viewport.

2190_Find the normalization transformation 1.png

Figure: Example Transformations

Currently, we observe that the window edges are not parallel to the coordinate axes. Consequently we will first rotate the window regarding W hence it is aligned along with the axes.

Now, tan α= (3 -1)/(5-1) = 1/2

⇒ Sin α =    1 /√5;   Cos α = 2/√5

Now, we are rotating the rectangle in clockwise direction. Consequently α is negative which is, - α.

The rotation matrix about W (1, 1):

550_Find the normalization transformation 2.png

[TR.θ]W =

945_Find the normalization transformation 3.png

The x extent of the rotated window is the length of WX:

√(42 + 22) = 2√5

As same, the y extent is length of WZ that is,

√ (12 + 22) =   √5

For scaling the rotated window to the normalized viewport we calculate sx and sy as,

 sx = (viewport x extent)/(window x extent)= 1/2√5

sy = (viewport y  extent)/(window y extent) =   1/√5

925_Find the normalization transformation 4.png

As in expression (1), the common form of transformation matrix showing mapping of a window to a viewport:

[T] =

Within this problem [T] may be termed as N as this is a case of normalization transformation with,

xwmin = 1                        xvmin = 0

ywmin = 1                        yvmin = 0

 sx = 1/2√5      

 sy =  1/√5

Via substituting the above values in [T] which is N:

N =

1677_Find the normalization transformation 5.png

Here, we compose the rotation and transformation N to determine the needed viewing transformation NR.

 NR = N [TR.θ]W =

2096_Find the normalization transformation 6.png


Related Discussions:- Find the normalization transformation

Behavioral animation - computer animation, Behavioral Animation - Computer ...

Behavioral Animation - Computer Animation It used for control the motion of several objects automatically. Objects or "actors" are specified rules about how they respond to th

Application areas of computer graphics, Explain application areas of comput...

Explain application areas of computer graphics in different areas.    Early computer graphics has only certain special capabilities such as straight lines circles and ellipses

Unity, what I unity of java game?

what I unity of java game?

Explain what you understand by corporate style guide, Question 1: (a) ...

Question 1: (a) Explain the term ‘logo' with the use of an example. (b) Explain in detail what three basic questions you need to ask yourself before creating a logo. (c) You

Local illumination model - polygon rendering, Local Illumination Model - Po...

Local Illumination Model - Polygon Rendering In this only light that is directly reflected by a light source through a surface to our eyes is observed. No explanation is taken

Animated gif, Animated GIF: For combining various GIF images in a particul...

Animated GIF: For combining various GIF images in a particular file to create animation, GIF file format is used. There are several drawbacks to such functionality. The form

perform a perspective projection on the plane, Consider at line segment AB...

Consider at line segment AB in the Figure k, parallel to the z-axis along with end points A (3, 2, 4) and B (3, 2, 8). Perform a perspective projection on the z = 0 plane from the

Voltage or electro-magnetic field tablet and pointer, (a)  Voltage or Elect...

(a)  Voltage or Electro-Magnetic Field Tablet and Pointer: This has a grid of wires, embedded in the tablet surface along with various voltages or magnetic fields consequent to va

Image precision, what is image precision in computer graphics

what is image precision in computer graphics

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd