Find the normalization transformation, Computer Graphics

Assignment Help:

Illustration: Find the normalization transformation N that uses the rectangle W (1, 1), X (5, 3), Y (4, 5) and Z (0, 3) as a window and also the normalized device screen like the viewport.

2190_Find the normalization transformation 1.png

Figure: Example Transformations

Currently, we observe that the window edges are not parallel to the coordinate axes. Consequently we will first rotate the window regarding W hence it is aligned along with the axes.

Now, tan α= (3 -1)/(5-1) = 1/2

⇒ Sin α =    1 /√5;   Cos α = 2/√5

Now, we are rotating the rectangle in clockwise direction. Consequently α is negative which is, - α.

The rotation matrix about W (1, 1):

550_Find the normalization transformation 2.png

[TR.θ]W =

945_Find the normalization transformation 3.png

The x extent of the rotated window is the length of WX:

√(42 + 22) = 2√5

As same, the y extent is length of WZ that is,

√ (12 + 22) =   √5

For scaling the rotated window to the normalized viewport we calculate sx and sy as,

 sx = (viewport x extent)/(window x extent)= 1/2√5

sy = (viewport y  extent)/(window y extent) =   1/√5

925_Find the normalization transformation 4.png

As in expression (1), the common form of transformation matrix showing mapping of a window to a viewport:

[T] =

Within this problem [T] may be termed as N as this is a case of normalization transformation with,

xwmin = 1                        xvmin = 0

ywmin = 1                        yvmin = 0

 sx = 1/2√5      

 sy =  1/√5

Via substituting the above values in [T] which is N:

N =

1677_Find the normalization transformation 5.png

Here, we compose the rotation and transformation N to determine the needed viewing transformation NR.

 NR = N [TR.θ]W =

2096_Find the normalization transformation 6.png


Related Discussions:- Find the normalization transformation

Common transformation for parallel projection-transformation, Derive the co...

Derive the common transformation for parallel projection into a specified view plane, here the direction of projection d=aI+bJ+cK is along the normal N=n1I+n2J+n3K along with the r

3-d transformation, 3-D Transformation The capability to represent or ...

3-D Transformation The capability to represent or display a three-dimensional object is basically to the knowing of the shape of that object. Moreover, the capability to rotat

Transformation, Define transformation. Explain all basic transformation

Define transformation. Explain all basic transformation

How to identify window area - raster graphics and clipping, A convex polygo...

A convex polygonal region having n- vertices {P 0 , P 1 , P 2 ..., P n - 1 , P n , P 0 } or lattice points to be identified by the user includes the convex window area. To be exact

Important points about the surface of revolution, Important points about th...

Important points about the Surface of Revolution a) if a point on base curve is given by parametric form, that are: (x(u), y(u), z(u)) so surface of revolution regarding to th

Mathematics-applications for computer animation, Mathematics: There are so...

Mathematics: There are some area like Probability, combination, permutation, etc.,that can be well explained along with the help of animation, that helps in enhancing the learning

Remote sensing packages-Image processing, Remote Sensing Packages: general...

Remote Sensing Packages: generally utilized software illustration is-" ERDAS" Characteristics: I.Best suitable for satellite imagery system. II. ERDAS uses geo-spatial in

Describe digital printing and prepress, Question 1: (a) Describe Digita...

Question 1: (a) Describe Digital Printing and Prepress? Also state the advantages and disadvantages of Digital printing? Question 2: (a) What are the three most import

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd