Find out the interval of validity, Mathematics

Assignment Help:

Without solving, find out the interval of validity for the subsequent initial value problem.

(t2 - 9) y' + 2y = In |20 - 4t|,   y(4) = -3

Solution

First, in order to use the theorem to determine the interval of validity we should write the differential equation in the exact form given in the theorem. Thus we will require dividing out through the coefficient of the derivative.

y' + (2/(t2 - 9))y = In |20 - 4t|/(t2 - 9)

Subsequently, we need to recognize where the two functions are not continuous. It will allow us to determine all possible intervals of validity for the differential equation. Thus, p(t) will be discontinuous at t = +3 since these points will provide a division by zero. Similarly, g(t) will also be discontinuous at t = + 3 and also t = 5 as at this point we will have the natural logarithm of zero. Remember that in this case we won't have to worry regarding to natural log of negative numbers due to the absolute values.

Here, with these points in hand we can break-up the real number line in four intervals and here both p(t) and g(t) will be continuous. These four intervals are as:

- ∞ < t < -3,     -3< t < 3,          3< t < 5,           5< t <

The endpoints of each of the intervals are points where as a minimum one of the two functions is discontinuous. It will guarantee that both functions are continuous everywhere in all intervals.

At last, let's identify the actual interval of validity for the initial value problem. The real interval of validity is the interval which will include to = 4. So, the interval of validity for the initial value problem is:

3 < t < 5

In this last illustration we require to be careful to not jump to the conclusion as another three intervals cannot be intervals of validity. Through changing the initial condition, in specific value of to, we can create any of the four intervals the interval of validity.

The first theorem needed a linear differential equation. There is a same theorem for non-linear first order differential equations. This theorem is not as useful for determining intervals of validity like the first theorem was thus we won't be liability all that much along with it.


Related Discussions:- Find out the interval of validity

Real numbers, how to present root numbers on a number line

how to present root numbers on a number line

Class 10, chapter permutation & combination ex :4.6

chapter permutation & combination ex :4.6

Find the original average of boys and girls in the class, When 6 boys were ...

When 6 boys were admitted & 6 girls left the percentage of boys increased from 60% to 75%. Find the original no. of boys and girls in the class. Ans: Let the no. of Boys be x

Constructing a dfa/nfa or a regex), Let ∑ = (0, 1). Define the following la...

Let ∑ = (0, 1). Define the following language: L = {x | x contains an equal number of occurrences of 01 and 10} Either prove L is regular (by constructing a DFA/NFA or a rege

Decimals, 0.875 of a number is 2282. What is the number ?

0.875 of a number is 2282. What is the number ?

Prove that abc=60 degree, ABC is a right triangle right-angled at C and AC=...

ABC is a right triangle right-angled at C and AC=√3 BC. Prove that ∠ABC=60 o . Ans:    Tan B = AC/BC Tan B = √3 BC/BC Tan B =√3 ⇒ Tan B = Tan 60 ⇒ B = 60

Matrices, how to find inverse of matrix

how to find inverse of matrix

Descriptive statistics, Descriptive Statistics Statistics Definit...

Descriptive Statistics Statistics Definition of Statistics: it viewed as a subject is a process of tabulating, collecting and analyzing numerical data upon which importan

Addition rule - probability rule, The Addition Rule: Mutually Exclusive Eve...

The Addition Rule: Mutually Exclusive Events P(A or B or C) = P(A) + P(B) + P(C) This can be represented by the Venn diagram as follows:

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd