Find out the compound interest, Algebra

Assignment Help:

Example: We are investing $100,000 in an account that earns interest at a rate of 7.5%

for 54 months.  Find out how much money will be in the account if,

(a) Interest is compounded quarterly.  

(b) Interest is compounded monthly. 

(c) Interest is compounded continuously.  

Solution

Before getting into each part let's recognize the quantities which we will require in all the parts and won't change.

P = 100, 000   r = 7.5 /100= 0.075    t = 54/12 =4.5

Remember that interest rates have to be decimals for these computations and t has to be in years!

Now, Solve out the problems.

 (a) Interest is compounded quarterly.

In this the interest is compounded quarterly and it means it is compounded 4 times a year. After 54 months then we have,

A = 100000 (1 + (0.075/ 4)( 4)( 4.5)

= 100000 (1.01875)18

=100000 (1.39706686207)

= 139706.686207 = $139, 706.69

Notice the amount of decimal places utilized here. We didn't do any rounding till the very last step. It is significant to not do too much rounding in intermediate steps along with these problems.

 (b) Interest is compounded monthly.

In this compounding monthly and so it means we are compounding 12 times a year.  Following is how much we'll have after 54 months.

A = 100000 (1 + 0.075 /12) (12)( 4.5)

= 100000 (1.00625)54

= 100000 (1.39996843023)

= 139996.843023 = $139, 996.84

Thus, compounding more times per year will yield more money.

 (c) Interest is compounded continuously.

At last, if we continuously compound then after 54 months we will have,

A =100000e(0.075)( 4.5)

= 100000 (1.40143960839)

= 140143.960839 = $140,143.96


Related Discussions:- Find out the compound interest

Eoc review, three consecutive odd integers such that the s f the first and ...

three consecutive odd integers such that the s f the first and second is 31 less than 3 times the third. find the inters.

Quadratic equations, In the earlier section we looked at using factoring & ...

In the earlier section we looked at using factoring & the square root property to solve out quadratic equations. The problem is that both of these methods will not always work. Not

Find the zeros of a function, 3y+2.5x+3.4 use graphing calculator and the x...

3y+2.5x+3.4 use graphing calculator and the x intercept approach. Use window[-3,3,1][-3,3,1]

Relationship between the graph of a function and its inverse, There is inte...

There is interesting relationship among the graph of function and its inverse. Here is the graph of the function & inverse from the first examples. We'll not deal along with the

Lagrange multipliers, 1. In real world optimisation problems there is often...

1. In real world optimisation problems there is often an accompanying constraint that must also be satisfied. These problems are typically solved using "Lagrange Multipliers", whic

, find the inverse function f(x)=log12(x

find the inverse function f(x)=log12(x)

Example of synthetic division, Using synthetic division do following  divis...

Using synthetic division do following  divisions. Divide 2x 3 - 3x - 5  by x + 2 Solution Okay in this case we have to be a little careful here. We have to divide by a

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd