Find out that the relation is an equivalent relation or not, Mathematics

Assignment Help:

Let m be a positive integer with m>1. Find out whether or not the subsequent relation is an equivalent relation.

R = {(a,b)|a ≡ b (mod m)}

Ans: Relation R is illustrated as ≡m (congruence modulo m) on the set of positive integers. Let us check if it is an equivalence relation.

Reflexivity: Let x ∈ Z+ be any integer, after that x ≡m x since both yields similar remainder when divided by m. So (x, x) ∈ R ∀ x ∈ Z.  ∴R is a reflexive relation. 

Symmetry: Let x and y be any two integers and (x, y) ∈ R. This depicts that x ≡m y and therefore y ≡m x. So, (y, x) ∈ R. ∴ R is a symmetric relation.

Transitivity: Let x, y and z be any three elements of Z like that (x, y) and (y, z) ∈ R. So, we have x ≡m y and y ≡m z.  It entails that (x-y) and (y-z) are divisible by m. Hence, (x - y) + (y - z) = (x - z) is as well divisible by m that is x ≡m z. 

∴ (x, y) and (y, z) ∈ R ⇒ (x, z) ∈ R. That is R is a transitive relation.  

Ans: Relation R is illustrated as ≡m (congruence modulo m) on the set of positive integers. Let us check if it is an equivalence relation.

Reflexivity: Let x ∈ Z+ be any integer, after that x ≡m x since both yields similar remainder when divided by m. So (x, x) ∈ R ∀ x ∈ Z.  ∴R is a reflexive relation. 

Symmetry: Let x and y be any two integers and (x, y) ∈ R. This depicts that x ≡m y and therefore y ≡m x. So, (y, x) ∈ R. ∴ R is a symmetric relation.

Transitivity: Let x, y and z be any three elements of Z like that (x, y) and (y, z) ∈ R. So, we have x ≡m y and y ≡m z.  It entails that (x-y) and (y-z) are divisible by m. Hence, (x - y) + (y - z) = (x - z) is as well divisible by m that is x ≡m z. 

∴ (x, y) and (y, z) ∈ R ⇒ (x, z) ∈ R that is R is a transitive relation.  

Hence R is an equivalence relation.


Related Discussions:- Find out that the relation is an equivalent relation or not

Proof f(x) + g(x) dx = f(x) dx + g(x) dx anti-derivation, Proof of: ...

Proof of: ∫ f(x) + g(x) dx = ∫ f(x) dx + ∫g(x) dx It is also a very easy proof. Assume that F(x) is an anti-derivative of f(x) and that G(x) is an anti-derivative of

Example of inverse matrix, Determine the inverse of the following matrix, i...

Determine the inverse of the following matrix, if it exists. We first form the new matrix through tacking onto the 3 x 3 identity matrix to this matrix.  It is, We

Roof-finding using steffensen''s method, write a computer program that will...

write a computer program that will implement Steffensen''s method.

Find the sum of all natural numbers, Find the sum of all natural numbers am...

Find the sum of all natural numbers amongst first one thousand numbers which are neither divisible 2 or by 5 Ans:    Sum of all natural numbers in first 1000 integers which ar

Find the surface-radius of earth, a) The distance d that can be seen fro...

a) The distance d that can be seen from horizon to horizon from an airplane varies directly as the square root of the altitude h of the airplane. If d = 213 km for h = 3950

Derivatives with chain rule, Chain Rule : We've seen many derivatives...

Chain Rule : We've seen many derivatives.  However, they have all been functions similar to the following kinds of functions. R ( z ) = √z      f (t ) = t 50

Series, if abebe murepay a $100000interse free loan by making annuallypaym...

if abebe murepay a $100000interse free loan by making annuallypayment of 1st

Geometry, what is sin, cos, and tan?

what is sin, cos, and tan?

How many multiplication required to calculate matrix product, (a) Assume th...

(a) Assume that A is a m 1 ×m 2 matrix and B is a m 2 ×m 3 matrix. How many multiplications are required to calculate the matrix product AB? (b) Given that A 1 is a 20 × 50 m

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd