Find out a series solution for differential equation, Mathematics

Assignment Help:

Find out a series solution for the following differential equation about x0 = 0

y′′ + y = 0.

 Solution

Note that in this case p(x)=1 and therefore every point is an ordinary point. We will be searching for a solution in the form,

156_Find out a series solution for differential equation.png

We will require plugging this in our differential equation therefore we'll require to get a couple of derivatives.

2337_Find out a series solution for differential equation1.png

Recall by the power series review section on power series which we can start these at n=0 if we require to, however it's almost all time best to start them where we have now.  If this turns out that this would have been simple to start them at n=0 we can simply fix this up while the time comes around.

Therefore, plug these in our differential equation. Doing it gives,

1373_Find out a series solution for differential equation2.png

The subsequent step is to combine everything in a particular series. To do that needs which we get both series starting at similar point and that the exponent on the x be similar in both series.

We will all the time start this through getting the exponent on the x to be similar. This is usually best to find the exponent to be an n. The second series previously has the correct exponent and the first series will require to be shifted down through 2 in order to find the exponent up to an n.  If you don't recall how to do it take a rapid look at the first review section where we did some of these kinds of problems.

Shifting the first power series provides us,

1219_Find out a series solution for differential equation3.png

Remember that in the method of the shift we also found both series starting at similar place. It won't always occur, but when it does we'll take this. We can here add up the two series. It gives us subsequent,

1756_Find out a series solution for differential equation4.png

Here recalling the fact from the power series review section we identify that if we contain a power series which is zero for all x as it is, then all the coefficients should have been zero to start with. It gives us the subsequent,

 (n + 2) (n + 1)an+2 +an =0,                               n = 0,1,2,......

These are termed as the recurrence relation and remember that we contain the values of n for that it should be true. We will all the time want to contain the values of n for that the recurrence relation is true as they won't all the time start at n = 0 as this did in this case.

Here let's recall what we were after in the initial place. We needed to get a series solution to the differential equation. So as to do this we required to find out the values of the an's. We are almost to the point where we can do this. The recurrence relation has two dissimilar a='s in this therefore we can't just solve this for an and find a formula which will work for all n.  We can though, use this to determine what all but two of the a='s are.

To do that we first solve the recurrence relation for the an which has the largest subscript.  Doing it gives as,

an+2 = (- (an))/((n + 2) (n + 1))                          n = 0,1,2,......

 

Currently, at this point we just require to start plugging in several values of n and notice what occurs,

837_Find out a series solution for differential equation5.png

See that at each step we all the time plugged back into the earlier answer hence when the subscript was even we could all the time write thean in terms of a0 and while the coefficient was odd we could all the time write the an in terms of a1. Also see that, during this case, we were capable to get a general formula for an's with even coefficients and an's with odd coefficients. It won't always be probable to do.

Now here is one more thing to notice. The formulas which we developed were simply for k=1,2,... though, in this case again, they will as well work for k=0. Again, it is something that won't forever work, but does now.

Do not get excited regarding to the fact which we don't know what a0 and a1 are.  As you will notice, we actually require these to be in the problem to find the accurate solution.

Here that we've found formulas for the an's let's find a solution. The first thing which we'll do is write out the solution along with a couple of the an's plugged into.

1641_Find out a series solution for differential equation6.png

The subsequent step is to collect all the terms along with similar coefficient in them and then factor out that coefficient.

2435_Find out a series solution for differential equation7.png

In the previous step we also used the fact which we knew what the common formula was to write both portions like a power series.


Related Discussions:- Find out a series solution for differential equation

Calculus!, x+2y^2=63 and 4x+y^2=0; Find the area of the regions enclosed by...

x+2y^2=63 and 4x+y^2=0; Find the area of the regions enclosed by the lines and curves.

Who made clothes for, on april 26, jonh dough wrote a check#374 to Miller P...

on april 26, jonh dough wrote a check#374 to Miller Pharmacy for $16.00 , is this a deposit or withdrawal

Application of probability in business, Application of Probability in Busin...

Application of Probability in Business 1. Business games of chance for illustration, Raffles Lotteries. 2. Insurance firms: this is generally done when a new client or prop

Callie grandmother pledged $0.50 for each mile callie walked, Callie's gran...

Callie's grandmother pledged $0.50 for each mile Callie walked in her walk-a-thon. Callie walked 9 miles. How much does her grandmother owe? Multiply the number of miles (9) th

Subsets of real numbers, is it true or false that all whole numbers are rat...

is it true or false that all whole numbers are rational numbers

Estimates the probabilities of price changes, Mr. Hoper is in charge of inv...

Mr. Hoper is in charge of investments for the golden horizon company. He estimates from past price fluctuations in the gold market that the probabilities of price changes on a give

Forced - damped vibrations, It is the full blown case where we consider eve...

It is the full blown case where we consider every final possible force which can act on the system. The differential equation in this case, Mu'' + γu'  + ku = F( t) The displ

Describe subtracting negative fractions, Describe Subtracting Negative Frac...

Describe Subtracting Negative Fractions? Subtracting two fractions, whether one is positive and one is negative, or whether they are both negative, is almost the same process a

Find the probability of drawing a diamond card, Find the probability of dra...

Find the probability of drawing a diamond card in each of the two consecutive draws from a well shuffled pack of cards, if the card drawn is not replaced after the first draw

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd