Fermi level, Electrical Engineering

Assignment Help:

Fermi Level

  • Electrons in solids obey Fermi-Dirac (FD) statistics.
  • This statistics accounts for the indistinguishability of the electrons, their wave nature, and the Pauli Exclusion Principle.
  • The Fermi-Dirac distribution function f(E) of electrons over a range of allowed energy levels at thermal equilibrium can be given by

F (E) = 1/ (1+e(E-EF)/KT)   (7)

where k is Boltzmann's constant (= 8.62 x   eV/K = 1.38 x 10-3 J/K)

  • This gives the probability that an available energy state at E will be occupied by an electron at an absolute temperature T.
  • EF is termed as the Fermi level and is a measure of the average energy of the electrons in the lattice => an extremely important quantity for analysis of device behavior.
  • Note: for (E - EF) > 3kT (known as Boltzmann approximation), f (E) ≈exp [- (E-EF)/kT] this is referred to as the Maxwell-Boltzmann (MB) distribution (followed by gas atoms).
  • The probability that an energy state at EFwill be occupied by an electron is 1/2 at all temperatures.
  • At 0 K, the distribution takes a simple rectangular form, with all states below EF occupied, and all states above EF empty.
  • At T > 0 K, there is a finite probability of states above EF to be occupied and states below EF to be empty.
  • The F-D distribution function is highly symmetric, i.e., the probability f (EF+ΔE) that a state E above EFis filled is the same as the probability [1- f (EF-ΔE)] that a state E below EFis empty.
  • This symmetry about EF makes the Fermi level a natural reference point for the calculation of electron and hole concentrations in the semiconductor.
  • Note: f (E) is the probability of occupancy of an available state at energy E, thus, if there is no available state at E (e.g., within the band gap of a semiconductor), there is no possibility of finding an electron there.
  • For intrinsic materials, the Fermi level lies close to the middle of the band gap (the difference between the effective masses of electrons and holes accounts for this small deviation from the mid gap).
  • In n-type material, the electrons in the conduction band outnumber the holes in the valence band, thus, the Fermi level lies closer to the conduction band.
  • Similarly, in p-type material, the holes in the valence band outnumber the electrons in the conduction band, thus, the Fermi level lies closer to the valence band.
  • The probability of occupation f(E) in the conduction band and the probability of vacancy [1- f(E)] in the valence band are quite small, however, the densities of available states in these bands are very large, thus a small change in f(E) can cause large changes in the carrier concentrations.

 


Related Discussions:- Fermi level

Explain the different coupling schemes used in amplifiers, Q. Explain the d...

Q. Explain the different coupling schemes used in amplifiers? When amplifiers are cascaded, it is necessary to use a coupling network between the output of one amplifier and th

Determine current in mosfet circuit, Consider the basic MOSFET circuit show...

Consider the basic MOSFET circuit shown in Figure with variable gate voltage. The MOSFET is given to have very large V A , V T = 4V,and I DSS = 8 mA. Determine i D and v DS for

Determine the output resistance of the circuit, Q. (a) Consider the ampl...

Q. (a) Consider the amplifier block in the circuit configuration of Figure. Find an expression for v 2 /v 1 in terms of R i , R o , and A of the amplifier. (b) Determine the

Three phase power measurement, what is the relationship between the inducta...

what is the relationship between the inductance, capacitance and resistance in the 2-wattmeter experiment?

Fourier deconstruction, Fourier Deconstruction Find the Fourier series ...

Fourier Deconstruction Find the Fourier series as far as the third harmonic, to represent the periodic function y, given by the values in the following table.

Calculate voltage and frequency, The stator and rotor of a three-phase, 440...

The stator and rotor of a three-phase, 440-V, 15-hp, 60-Hz, eight-pole, wound-rotor induction motor are both connected in wye and have the following parameters per phase: R1 = 0.5

Construction and operation of enhancement mosfet, Q. Explain the constructi...

Q. Explain the construction and operation of Enhancement MOSFET? The construction of an N-channel enhancement MOSFET is shown in figure below. Two highly doped N + regions are

Properties of p-n junction, Properties of a p-n junction The p-n junct...

Properties of a p-n junction The p-n junction possesses several interesting properties that have helpful applications in modern electronics. A p-doped semiconductor is compara

Plot the waveforms of the inductor current, Q. The current through a 2.5-mH...

Q. The current through a 2.5-mH indicator is a damped sine given by i(t) = 10 e -500t sin 2000t. With the aid of MATLAB, plot the waveforms of the inductor current i(t), with v

Linear and IC applications, bias compensation techniques for ac and dc char...

bias compensation techniques for ac and dc characteristics

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd