Fermat''s theorem, Mathematics

Assignment Help:

Fermat's Theorem : If  f ( x ) contain a relative extrema at x = c & f ′ (c ) exists then x = c is a critical point of f ( x ) . Actually, it will be a critical point such that f ′ (c ) = 0 .

Note as well that we can say that f ′ (c ) = 0 since we are also supposing that  f ′ (c ) exists.

This theorem described us that there is a nice relationship between relative extrema and critical points. In fact it will let to get a list of all possible relative extrema.  As a relative extrema have to be a critical point the list of all critical points will give us a list of all possible relative extrema.

Consider the case of f ( x ) = x2 .  We illustrated that this function had a relative minimum at x = 0 in various earlier examples. Hence according to Fermat's theorem x = 0 must be a critical point. The derivative of the function is,

                                                               f ′ ( x ) = 2x

Certain enough x = 0 is a critical point.

Be careful not to use wrongly this theorem.  This doesn't say that a critical point will be a relative extrema.  To illustrate this, consider the following case.

f ( x ) = x3                          f ′ ( x ) = 3x2

Clearly x = 0 is a critical point. Though we know that this function has no relative extrema of any kind.  Thus, critical points do not have to be relative extrema.

Also note as well that this theorem says nothing regarding absolute extrema.  An absolute extrema might or might not be a critical point.


Related Discussions:- Fermat''s theorem

Example of inflection point-differential equation, Example of inflection po...

Example of inflection point Determine the points of inflection on the curve of the function y = x 3 Solution The only possible inflexion points will happen where

How many people are usual to vote for mr salva on survey, The Daily News re...

The Daily News reported that 54% of people surveyed said in which they would vote for Larry Salva for mayor. Based on the survey results, if 23,500 people vote in the election, how

Operation research, details about criticl part time & pert method

details about criticl part time & pert method

Heat loss in cylindrical pipe, which physics law is used to describe heat l...

which physics law is used to describe heat loss in cylindrical pipe

what are the coordinates of the vertex , Use the graph of y = x2 - 6x  to ...

Use the graph of y = x2 - 6x  to answer the following: a)         Without solving the equation (or factoring), determine the solutions to the equation  x 2 - 6x = 0  usi

Frequency polygon, how to compute the frequncy polygon of the scores?

how to compute the frequncy polygon of the scores?

Solve the form x2 - bx + c, The form x2 - bx + c ? This tutorial will ...

The form x2 - bx + c ? This tutorial will help you factor quadratics that look something like this: x 2 -7x + 12 (No leading coefficient; negative middle coefficient; p

How does a child think-knowing your maths learner, HOW DOES A CHILD THINK? ...

HOW DOES A CHILD THINK? :  You must have interacted with children of various ages. From your experience, do you feel that children start learning, from a very early age, and conti

Indices, advantages and disadvantages of paasche and laspeyres indices

advantages and disadvantages of paasche and laspeyres indices

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd