Explain the block diagrtam of d.c. voltmeter , Electrical Engineering

Assignment Help:

Q. Explain the block diagrtam of D.C. voltmeter with direct coupled amplifier.

Sol. D.C, voltmeter with direct coupled Amplifier

        The D.C. electronic voltmeters consist of an ordinary D.C. meter movement preceded by a D,C, amplifier of one or more stages. When a very high input resistance is required it is convenient to use an FET at the input stage. The output of the FET can usually be directly coupled to the input of a BJT.

        Direct coupled amplifiers are normally used in low priced D.C. amplifier. Bipolar transistor Q2 along with resistors forms a balanced bridge circuit FET. Q1 serves as a source follower and is used to provide impedance transformation between the input and base of Q2.  The bias on Q2 such that i= i3 when the input voltage Vin = 0 under that condition Vx =Vy, so that no current flow through the meter movement that is i4 = 0. The bias on Q2 is controlled by input voltage Vin thus when an unknown input which cause V1 to increase. Since Vx become greater than Vy, current i4 is no longer zero. The magnitude of this current, hence the deflection of the meter is proportional to Vin.

        The value of Vin. That cause maximum meter deflection is the basic range of the instrument. This is generally the lowest range on the range switch in non-amplified models. High range can be obtained by using an input attenuator and lower ranges can be obtained by a preamplifier.

       The input attenuator in fig (A) is a calibrate front panel control in the form of resistance voltage divider. The full scale voltage appears across the divider so that the voltage at each tap is a progressively lower fraction of the full input voltage.

      Bridge balance is obtained by adjustment the zero set potentiometer when VIN is zero full scale calibration is obtained by adjusting the potentiometer marked calibration in series with the ammeter.

     The advantages of this meter are

(1)           It decreases the amount of power drawn from the circuit under test by increasing the input impedance using an amplifier with unity gain.

(2)           The source follower drives am emitter follower. This combination is capable of thousand fold or more increases impedance while maintaining a voltage gain of nearly one.

(3)           The input impedance of this meter is 10?, which require a power of .025 µW for a 0.5 V deflection as compared to 25 µ W for an unamplifid meter thereby giving an increased sensitivity of 100 times.

A block diagram of a meter used for measurement of small voltage and currents is shown. The input voltage is amplified and applied to a increased by a like amount. A D.C -coupled amplifier that is an amplifier with no coupling capacitors and having a well controlled D.C, gain, is used to provide dot necessary amplification. An amplifier capable of a fixed DC gain of 10 is not difficult to construct and to keep stable. A simple op-amp plus the required feedback components will do a suitable job for this application.

 DC gains of much more than 10 are required to use a standard D Arsonval meter movement to measure very small currents and voltages such as microvolt and nanoampere. To amplify nano ampere to drive a milliampere meter require a gain of 106. This requires an op amp and two resistor and a simple circuit. However when gains this large are desired, all the defects of an operational amplifier become significant offset current, offset voltage and biases current become so troublesome that it is practically impossible to achieve acceptable performance with a standard op amp. Many of these defects can be reduced or eliminated by the use of trim adjustments accessible from the front panel in a similar fashion as the calibrate and zero function discussed above.


Related Discussions:- Explain the block diagrtam of d.c. voltmeter

Ac circuits, AC Circuit: This topic explain the basic concepts of sing...

AC Circuit: This topic explain the basic concepts of single and three-phase ac system. Unit provides the thorough analysis and derivations as required by topics. Here we find

wind turbine, pls how can i stat up building wind turbin

pls how can i stat up building wind turbine

Why biasing in necessary in transistor, (a) Describe why ordinary junction ...

(a) Describe why ordinary junction transistor is known as bipolar. (b) Describe working of NPN transistor as common Base configuration. Describe working of NPN transistor in

Sparking with electrical equipment, Sparking : In ordinary domestic situat...

Sparking : In ordinary domestic situations, small electrical sparks are usually not hazardous. In certain conditions which are frequently encountered in science labs, even the sma

Solar energy, project for solar panel for farms in Saudi Arabia

project for solar panel for farms in Saudi Arabia

Find out the output if resistance, Q. The input to the differentiator circu...

Q. The input to the differentiator circuit is a sinusoidal voltage of peak value 5mv and frequency 1kHZ. find out the output if R=100K and C=10^-6F Solution. The equation

Software, Write a computer program to implement the finite difference metho...

Write a computer program to implement the finite difference method. The program can be in any computer language that is available within the school. Set up the code to find the pot

Obtain voltage sing the laplace transform method, Obtain v(t) in the circui...

Obtain v(t) in the circuit of Figure by using the Laplace transform method.

Resultant force, State and prove parallelogram law of forces and explain i...

State and prove parallelogram law of forces and explain it''s applications

\, Refer to Figure 100. Assume MKS units. Given: R1= 4, R2=14, R3= 9, I4...

Refer to Figure 100. Assume MKS units. Given: R1= 4, R2=14, R3= 9, I4= 8, I5= 7. Determine: Ieq, Req, and V3.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd