Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
SOL. Ramp Type VM: The operating principle of the ramp type DVM is based on the measurement of the time it takes for a linear ramp voltage to rise from 0 V to the level of the input voltage or to decrease from the level of the voltage to zero. This time interval is measured with an electronic time interval counter and the count is displayed as a number of digits on electronic indicating tubes.
Conversion from a voltage to a time interval is illustrated by the waveform diagram.
At the start of the measurement cycle, a ramp voltage is initiated, this voltage can be3 positive going or negative going. The negative going ramp is continuously compared with the unknown input voltage. At instant that the ramp voltage equals the unknown voltage, a coincidence circuit a comparator, generates a pulse which open a gate. This gate is shown in the block diagram of.
The voltage continues to decrease with time until it finally reaches 0 V (or ground potential) and a second comparator generates an output pulse which closes the gate.
An oscillator generates clock pulses which are allowed to pass through the gate to a number of decade counting units (DCU's) which totalize the number of pulses passed through the gate. The decimal number, displayed by the indicator tubes associated with the DCU's is a measure of the magnitude of the input voltage. The sample rate multivibrator determines the rate at of which the measurement cycles are initiated. The oscillation of this multivibrator can usually be adjusted by a front panel control, marked rate, from a few cycles per second to as high as 1000or more. The sample rate circuit procides an intiating pulose for the ramp generator to start its next ramp voltage. At the same time a reset pulse is generated which returns all the D.C. Voltages to their 0 state. Removing the display momentarily from the indicator tubes.
Q. Explain about Delay System? Delay System: A class of telecommunication networks, like data networks, places the message or call arrivals in a queue in the
real time uses of norton''s theorem
Explain n-type and p-type semiconductors. n - Type semiconductor: If small amount of pentavalent impurity (group V elements) is added to a pure semiconductor giving a large
Q. Gate source cut off voltage? It is the gate source voltage where the channel is completely cut off and the drain current becomes zero.It is interesting to note that the valu
Q. For the capacitor shown in Figure connected to a voltage source, sketch i(t) and w(t).
Problem : a) What is the definition of Electromagnetic Compatibility (EMC) according to the International Electrotechnical Commission (IEC) and why is it gaining increasing imp
What is reading mechanism of a 3 phase meter?
Q. Explain Time-invariant versus time-varying systems? When the parameters of a control systemare stationary with respect to time during the operation of the system, the system
Q. Two single-phase transformers, each rated 2400: 120-V, are to be interconnected for (a) 4800:240- V operation, and (b) 2400:120-V operation. Draw circuit diagrams and show polar
State and prove parallelogram law of forces and explain it''s applications
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd