Explain lobachevskian geometry and riemannian geometry, Mathematics

Assignment Help:

Explain Lobachevskian Geometry and Riemannian Geometry ?

Nineteenth century mathematician Nicolai Lobachevsky assumed that the summit angles of a Saccheri quadrilateral are acute. Mathematicians Carl Freidrich Gauss and Johann Bolyai, who lived thousands of miles apart, also shared this belief. Based on this assumption, the new non-Euclidean geometry called Lobachevskian geometry was born. The following is a list of Lobachevskian postulates and theorems.

391_summit angle.png

Postulate (Lobachevskian Postulate)
In Lobachevskian geometry, both of the summit angles of a Saccheri quadrilateral are acute.

Theorem
In Lobachevskian geometry, the base of a Saccheri quadrilateral is shorter than the summit.

2155_angels.png

Theorem
In Lobachevskian geometry, the length of the midsegment of a triangle is less than half that of the third side.

Theorem
In Lobachevskian geometry, the sum of the three angles of a triangle is less than 180.

Theorem
In Lobachevskian geometry, the sum of the angles of a convex quadrilateral is less than 360.

Theorem
In Lobachevskian geometry, similar triangles must be congruent.

The Lobachevskian theorems contradict only the parallel postulate of Euclidean geometry and any conclusions based on that postulate. There is more than one parallel to a line in Lobachevskian geometry. Other than that, the Euclidean geometry is in conformity with the Lobachevskian geometry.

925_midpoints.png

The conclusion of theorem 15.9 is drawn from the fact that there are no scale models in Lobachevskian geometry: if two figures have different sizes they cannot have the same shape. This is also true for Riemannian geometry in which the sum of the three angles of a triangle is more than 180.

The geometry developed by German mathematician Bernard Riemann says that there are no parallels, just like in sphere geometry. And just opposite to Lobachevskian geometry, the summit angles of a Saccheri quadrilateral are obtuse.

Postulate  (Riemannian Postulate)
In Riemannian geometry, both of the summit angles

of a Saccheri quadrilateral are obtuse.
Theorem
In Riemannian geometry, the base of a Saccheri quadrilateral is longer than the summit.

Theorem
In Riemannian geometry, the length of the midsegment of a triangle is more than half that of the third side.

Theorem
In Riemannian geometry, the sum of the three angles of a triangle is more than 180.


Related Discussions:- Explain lobachevskian geometry and riemannian geometry

Determine the laplace transform of the probability , 1. Let , where  ar...

1. Let , where  are independent identically distributed random variables according to an exponential distribution with parameter μ. N is a Binomially distribut

the jetstream''s speed, A passenger jet took 3 hours to fly 1800 km in the...

A passenger jet took 3 hours to fly 1800 km in the direction of the jetstream. The return trip against the jetstream took four hours. What was the jet's speed in still air and the

Arc length and surface area revisited, Arc Length and Surface Area Revisite...

Arc Length and Surface Area Revisited We won't be working any instances in this part.  This section is here exclusively for the aim of summarizing up all the arc length and su

Complex number 1pi in polar form, Whlie solving complex number 1pi in polar...

Whlie solving complex number 1pi in polar form.In book they have taken theta =-pi/4 why not 7pi/4 because the point lie in fourth quadrant and the theta is given by 2pi-angle(alpha

Help, dividing decimals

dividing decimals

Partial derivatives - set theory, Partial Derivatives Partial derivati...

Partial Derivatives Partial derivatives are used while we want to investigate the effect of one independent variable on dependent variable. For illustration, the revenues of a

Applications of percentage, rajan bought an armchair for rs.2200 and sold i...

rajan bought an armchair for rs.2200 and sold it for rs.2420.find his profit per cent.

Assemble the coefficient matrix and solve the linear system, Solve discrete...

Solve discrete harmonic mapping of a given surface patch (suppose the surface is genus-0 and with one boundary) 1. Map the boundary loop onto a unit rectangle using chord-length

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd