Explain lobachevskian geometry and riemannian geometry, Mathematics

Assignment Help:

Explain Lobachevskian Geometry and Riemannian Geometry ?

Nineteenth century mathematician Nicolai Lobachevsky assumed that the summit angles of a Saccheri quadrilateral are acute. Mathematicians Carl Freidrich Gauss and Johann Bolyai, who lived thousands of miles apart, also shared this belief. Based on this assumption, the new non-Euclidean geometry called Lobachevskian geometry was born. The following is a list of Lobachevskian postulates and theorems.

391_summit angle.png

Postulate (Lobachevskian Postulate)
In Lobachevskian geometry, both of the summit angles of a Saccheri quadrilateral are acute.

Theorem
In Lobachevskian geometry, the base of a Saccheri quadrilateral is shorter than the summit.

2155_angels.png

Theorem
In Lobachevskian geometry, the length of the midsegment of a triangle is less than half that of the third side.

Theorem
In Lobachevskian geometry, the sum of the three angles of a triangle is less than 180.

Theorem
In Lobachevskian geometry, the sum of the angles of a convex quadrilateral is less than 360.

Theorem
In Lobachevskian geometry, similar triangles must be congruent.

The Lobachevskian theorems contradict only the parallel postulate of Euclidean geometry and any conclusions based on that postulate. There is more than one parallel to a line in Lobachevskian geometry. Other than that, the Euclidean geometry is in conformity with the Lobachevskian geometry.

925_midpoints.png

The conclusion of theorem 15.9 is drawn from the fact that there are no scale models in Lobachevskian geometry: if two figures have different sizes they cannot have the same shape. This is also true for Riemannian geometry in which the sum of the three angles of a triangle is more than 180.

The geometry developed by German mathematician Bernard Riemann says that there are no parallels, just like in sphere geometry. And just opposite to Lobachevskian geometry, the summit angles of a Saccheri quadrilateral are obtuse.

Postulate  (Riemannian Postulate)
In Riemannian geometry, both of the summit angles

of a Saccheri quadrilateral are obtuse.
Theorem
In Riemannian geometry, the base of a Saccheri quadrilateral is longer than the summit.

Theorem
In Riemannian geometry, the length of the midsegment of a triangle is more than half that of the third side.

Theorem
In Riemannian geometry, the sum of the three angles of a triangle is more than 180.


Related Discussions:- Explain lobachevskian geometry and riemannian geometry

Relative maximum point, Relative maximum point The above graph of the ...

Relative maximum point The above graph of the function slopes upwards to the right between points C and A and thus has a positive slope among these two points. The function ha

Ratio lanquage, Alexis needs to paint the four exterior walls of a large re...

Alexis needs to paint the four exterior walls of a large rectangular barn. the length of the barn is 80 feet the width is 50 feet and the height is 30 feet. The pain costs 28 dolla

Magnitude - vector, Magnitude - Vector The magnitude, or length, of th...

Magnitude - Vector The magnitude, or length, of the vector v → = (a1, a2, a3) is given by, ||v → || = √(a 1 2 + a 2 2 + a 2 3 ) Example of Magnitude Illus

Draw the state diagram - transition function, 1. Let M be the PDA with stat...

1. Let M be the PDA with states Q = {q0, q1, and q2}, final states F = {q1, q2} and transition function δ(q0, a, λ) = {[q0, A]} δ(q0, λ , λ) = {[q1, λ]} δ(q0, b, A) = {[q2

Metric space, Assume that (X, d) is a metric space and let (x1, : : : , x n...

Assume that (X, d) is a metric space and let (x1, : : : , x n ) be a nite set of pointsof X. Elustrate , using only the de nition of open, that the set X\(x1, : : : , x n ) obtain

Can religious wars be avoided in the future, To what extent do you think re...

To what extent do you think religious beliefs should justify war? How is this shown in "The Song of Roland"? Cite examples of how religious beliefs have led to war in the last two

Series solutions to differential equation, Before we find into finding seri...

Before we find into finding series solutions to differential equations we require determining when we can get series solutions to differential equations. Therefore, let's start wit

ConnectEd, How do I increase and decrease tax and sales

How do I increase and decrease tax and sales

Precalc, I dont understand arcsin and arccos and how to find the domain...h...

I dont understand arcsin and arccos and how to find the domain...help?

.fractions, what is the difference between North America''s part of the tot...

what is the difference between North America''s part of the total population and Africa''s part

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd