Explain factor by grouping, Mathematics

Assignment Help:

Explain Factor by Grouping ?

Factoring by grouping is often a good way to factor polynomials of 4 terms or more. (Sometimes it isn't. It doesn't always work. But it's worth trying.)

Example with 4 terms

Take a look at this one:

2x3 -4x2 + 3x -6

Before I work through the example, take a look at the first two coefficients (2 and -4) and the last two (3 and -6). Notice how the ratios are the same (2 : -4 = 3: -6)? That's a good clue that factoring by grouping might work. OK, now let's group the first two terms and the last two terms.

(2x3 -4x2 ) + (3x -6 )
Now, in each of these groups, factor out any common monomial factors.

2x2 (x -2 ) + 3(x -2)
See how you have the same factor, (x -2 ), left over in each term? That's how you know that this method really is going to work. ( Up to this point, one isn't really sure.) All you have to do is factor out the (x -2) using reverse distribution,

(2x2 + 3)(x -2)
and you're done!
Nastiness with negative signs
This one is only slightly different from the previous one:

2x3 -4x2 -3x + 6

Here's the first problem you encounter: it's easy to make the mistake of putting the minus sign outside the parentheses:

(2x3 -4x2 ) - (3x + 6) (Wrong!)

Be sure to put the minus sign inside the parentheses, because it belongs only to the 3x and not to the 6.

(2x3 -4x2 ) + (-3x + 6)

The next step is to factor out, from each group, any common monomial factors:

2x2 (x -2 ) + 3(-x + 2)

Now, ideally, the groups left, (x -2) and (-x + 2), should be the same. They're not. But notice that if you factor out a negative sign from the second group, then they will be the same.

2x2 (x -2 ) -3(x -2).
At last you can factor out the (x -2 ).

(2x2 - 3)(x - 2)

Example involving more than 4 terms.
You sometimes have to experiment a little when you're grouping the terms. Often, one way of grouping the terms doesn't work, while another way does. Here are a couple of tips for grouping the terms:
• You must always have the same number of terms in each Group.

• The ratios of the coefficients in one group must be the same as the ratios in the other groups.
OK, here's the example.
2x9 + x8 + 6x7 + 3x6 - 3x2 - 9
If you just try to group the three terms on the left and the three on the right, it won't work. Don't feel bad about this attempting to group it this way is not a "mistake". You don't know whether it will work until you try.
(2x9 + x8 + 6x7)+ (3x6 -3x2 - 9)
x7 (2x2 + x + 6) + 3(x6 - x2 -3)
Doesn't work -the two groups aren't the same after removing common factors.
So, try it another way, rearranging some of the terms. Notice how the rations of coefficients are the same in each group!
(2x9 + x8 -3x2 ) + (6x7 + 3x6 -9)
2 : 1 : -3 = 6 : 3 : -9
Now remove the common factors,
x2 (2x7 + x6 -3) + 3(2x7 + x6 - 3)
And the two groups are the same! Finish it up with a reverse distribution,
(x2 + 3)(2x7 + x6 -3)
and you're done.


Related Discussions:- Explain factor by grouping

Prove that a/b+c-a, a, b,c are in h.p prove that a/b+c-a, b/a+c-b, c/a+b-c ...

a, b,c are in h.p prove that a/b+c-a, b/a+c-b, c/a+b-c are in h.p To prove: (b+c-a)/a; (a+c-b)/b; (a+b-c)/c are in A.P or (b+c)/a; (a+c)/b; (a+b)/c are in A.P or 1/a; 1

Algebra, solutions for the equation a-b=5

solutions for the equation a-b=5

probability , An engineer has 200 resistors that he keeps in one box. Resi...

An engineer has 200 resistors that he keeps in one box. Resistors are colored to help their identification, and in this box there are 30 white resistors, 50 black resistors, 80 red

NUMERABILITY, AFIGURE THIS OUT(3) (14) (17) (20) (25)= 8 WHAT ARE THE PROC...

AFIGURE THIS OUT(3) (14) (17) (20) (25)= 8 WHAT ARE THE PROCEDURES (-)(+)(x)(div) BETWEEN EACH NUMBER TO COME UP WITH 8 ?

Divison, what is 24 diveded by 3

what is 24 diveded by 3

Polygon on a coordinate, a square tile measures 12 inches by 12 inches each...

a square tile measures 12 inches by 12 inches each unit on a coordinate grid represents 1 inch (1,1) and (1,13) are two of the coordinate of the tile drawn on the grid what are the

Explain adding negative fraction, Explain Adding Negative Fraction? To...

Explain Adding Negative Fraction? To add negative fractions: 1. Find a common denominator. 2. Change the fractions to their equivalents, so that they have common denominators

Find out the dimensions of the field-optimization, We have to enclose a fie...

We have to enclose a field along with a fence. We contain 500 feet of fencing material & a building is on one side of the field & thus won't require any fencing.  Find out the dime

Give a definition of perimeter and area, Give a Definition of Perimeter and...

Give a Definition of Perimeter and Area? Perimeter is the distance around a flat (2-dimensional) shape. Area is the amount of space taken up by a flat (2-dimensional) shape. is

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd