Explain factor by grouping, Mathematics

Assignment Help:

Explain Factor by Grouping ?

Factoring by grouping is often a good way to factor polynomials of 4 terms or more. (Sometimes it isn't. It doesn't always work. But it's worth trying.)

Example with 4 terms

Take a look at this one:

2x3 -4x2 + 3x -6

Before I work through the example, take a look at the first two coefficients (2 and -4) and the last two (3 and -6). Notice how the ratios are the same (2 : -4 = 3: -6)? That's a good clue that factoring by grouping might work. OK, now let's group the first two terms and the last two terms.

(2x3 -4x2 ) + (3x -6 )
Now, in each of these groups, factor out any common monomial factors.

2x2 (x -2 ) + 3(x -2)
See how you have the same factor, (x -2 ), left over in each term? That's how you know that this method really is going to work. ( Up to this point, one isn't really sure.) All you have to do is factor out the (x -2) using reverse distribution,

(2x2 + 3)(x -2)
and you're done!
Nastiness with negative signs
This one is only slightly different from the previous one:

2x3 -4x2 -3x + 6

Here's the first problem you encounter: it's easy to make the mistake of putting the minus sign outside the parentheses:

(2x3 -4x2 ) - (3x + 6) (Wrong!)

Be sure to put the minus sign inside the parentheses, because it belongs only to the 3x and not to the 6.

(2x3 -4x2 ) + (-3x + 6)

The next step is to factor out, from each group, any common monomial factors:

2x2 (x -2 ) + 3(-x + 2)

Now, ideally, the groups left, (x -2) and (-x + 2), should be the same. They're not. But notice that if you factor out a negative sign from the second group, then they will be the same.

2x2 (x -2 ) -3(x -2).
At last you can factor out the (x -2 ).

(2x2 - 3)(x - 2)

Example involving more than 4 terms.
You sometimes have to experiment a little when you're grouping the terms. Often, one way of grouping the terms doesn't work, while another way does. Here are a couple of tips for grouping the terms:
• You must always have the same number of terms in each Group.

• The ratios of the coefficients in one group must be the same as the ratios in the other groups.
OK, here's the example.
2x9 + x8 + 6x7 + 3x6 - 3x2 - 9
If you just try to group the three terms on the left and the three on the right, it won't work. Don't feel bad about this attempting to group it this way is not a "mistake". You don't know whether it will work until you try.
(2x9 + x8 + 6x7)+ (3x6 -3x2 - 9)
x7 (2x2 + x + 6) + 3(x6 - x2 -3)
Doesn't work -the two groups aren't the same after removing common factors.
So, try it another way, rearranging some of the terms. Notice how the rations of coefficients are the same in each group!
(2x9 + x8 -3x2 ) + (6x7 + 3x6 -9)
2 : 1 : -3 = 6 : 3 : -9
Now remove the common factors,
x2 (2x7 + x6 -3) + 3(2x7 + x6 - 3)
And the two groups are the same! Finish it up with a reverse distribution,
(x2 + 3)(2x7 + x6 -3)
and you're done.


Related Discussions:- Explain factor by grouping

Local maxima, Given that f(x,y) = 3xy -  x 2 y  - xy 2 . Fi nd all the poin...

Given that f(x,y) = 3xy -  x 2 y  - xy 2 . Fi nd all the points on the surface z = f(x, y)where local maxima, local minima, or saddles occur

Explain polynomials, P OLYNOMIALS : It is  not  once  nor  twice  b...

P OLYNOMIALS : It is  not  once  nor  twice  but  times  without  number  that the  same ideas make  their  appearance in the  world. 1.  Find the value for K for which

Determine the minimum cost , A company is taking bids on four construction ...

A company is taking bids on four construction jobs. Three Contractors have placed bids on the jobs. Their bids (in thousands of dollars) are given in the file. (A blank indicates n

., Two boys A and B are at two diametrically opposite points on a circle. A...

Two boys A and B are at two diametrically opposite points on a circle. At one instant the two start running on the circle; A anticlockwise with constant speed v and B clockwise wit

How do you traverse a binary tree, How do you traverse a Binary Tree?  Desc...

How do you traverse a Binary Tree?  Describe Preorder, Inorder and Postorder traversals with example.     Ans: Traversal of tree means tree searching for a aim. The aim may be

Math, what is 24566x12567=

what is 24566x12567=

Partial Differentiation, If the sides angles of a triangle ABC vary in such...

If the sides angles of a triangle ABC vary in such a way that it''s circum - radius remain constant. Prove that, da/cos A +db/cos B+dc/cos C=0

Determine the projection - vector, Determine the Projection of b = (2, 1, -...

Determine the Projection of b = (2, 1, -1) onto a = (1, 0, -2) There is a requirement of a dot product and the magnitude of a. a →  • b → = 4                             ||a

Even and odd functions, Even and Odd Functions : This is the final topic ...

Even and Odd Functions : This is the final topic that we have to discuss in this chapter.  Firstly, an even function is any function which satisfies,

Applications of derivatives rate change, Application of rate change Bri...

Application of rate change Brief set of examples concentrating on the rate of change application of derivatives is given in this section.  Example    Find out all the point

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd