Example on eulers method, Mathematics

Assignment Help:

For the initial value problem

y' + 2y = 2 - e-4t, y(0) = 1

By using Euler's Method along with a step size of h = 0.1 to get approximate values of the solution at t = 0.1, 0.2, 0.3, 0.4, and 0.5. Compare them to the accurate values of the solution as such points.

Solution

It is a fairly simple linear differential equation thus we'll leave it to you to check that the solution as

y(t) = 1 + ½ e-4t - ½ e-2t

Thus as to use Euler's Method we first want to rewrite the differential equation in the form specified in (1).

y'= 2 - e-4t-2y

From that we can notice that f (t, y ) = 2 - e-4t  - 2y.  Also see that t = 0 and y0 = 1.  We can here start doing many computations.

fo = f(0,1) = 2 - e-4(0)  - 2(1) = -1

y1 = y0 + h f0 = 1 (0.1) (-1) = 0.9

Therefore, the approximation to the solution at t1 = 0.1 is y1 = 0.9.

At the next step we contain

f1 = f(0.1,0.9) = 2 - e-4(0.1)  - 2(0.9) = -0.470320046

y2 = y1 + h f1 = 0.9 + (0.1) (-0.470320046) = 0.852967995

Therefore, the approximation to the solution at t2 = 0.2 is y2 = 0.852967995.

I'll leave this to you to verify the remainder of these calculations.

 f2  =-0.155264954,     y3  = 0.837441500

f3  =0.023922788,        y4  = 0.839833779

f4  =0.1184359245,      y5  = 0.851677371

Here's a rapid table which gives the approximations and also the exact value of the solutions at the specified points.

Time, tn

Approximation

Exact

Error

t0 = 0 t1 = 0.1 t2 = 0.2 t3 = 0.3 t4 = 0.4 t5 = 0.5

y0 =1

y1 =0.9

y2 =0.852967995

y3 =0.837441500

y4 =0.839833779

y5 =0.851677371

y(0) = 1

y(0.1) = 0.925794646

y(0.2) = 0.889504459 y(0.3) = 0.876191288 y(0.4) = 0.876283777 y(0.5) = 0.883727921

0 %

2.79 %

4.11 %

4.42 %

4.16 %

3.63 %

We've also comprised the error as a percentage. It's frequently easier to notice how well an approximation does whether you look at percentages. The formula for that is,

 Percent error = (|exact - approximate|/exact) - 100

We utilized absolute value in the numerator because we actually don't care at this point if the approximation is smaller or larger than the exact. We're merely interested in how close the two are.

The maximum error in the approximations from the previous illustration was 4.42 percent that isn't too bad, although also isn't all that great of an approximation. Thus, provided we aren't after very correct approximations such didn't do too badly. This type of error is commonly unacceptable in almost all actual applications though. Consequently, how can we get better approximations?

By using a tangent line recall that we are getting the approximations to approximate the value of the solution and which we are moving forward in time through steps of h. Therefore, if we need a more accurate approximation, so it seems like one manner to get a better approximation is to not move forward as much along with each step. Conversely, take smaller h's.


Related Discussions:- Example on eulers method

The sum of -4 and a number is equal to -48 what is number, The sum of -4 an...

The sum of -4 and a number is equal to -48. What is the number? Let x = the number. Because sum is a key word for addition, the equation is -4 + x = -48. Add 4 to both sides o

What is the difference in the two low temperatures, The low temperature in ...

The low temperature in Anchorage, Alaska present was -4°F. The low temperature in Los Angeles, California was 63°F. What is the difference in the two low temperatures? Visualiz

What is factorial, Q. What is Factorial? A factorial is a number with a...

Q. What is Factorial? A factorial is a number with a factorial sign, !, after it. 5! is read "five factorial." 3! is read "three factorial." The factorial of a natural

Homework, joey asked 30 randomly selected students if they drank milk, juic...

joey asked 30 randomly selected students if they drank milk, juice, or bottled water with their lunch. He found that 9 drank milk, 16 drank juice, and 5 drank bottled water. If the

Mortgages, compute the monthly payment on a 30 year level payment mortagage...

compute the monthly payment on a 30 year level payment mortagagesasuming an annual mortgages principal of $400000

Trivial solution of equation, Specified a system of equations, (1), we will...

Specified a system of equations, (1), we will have one of the three probabilities for the number of solutions. 1.   No solution. 2.   Accurately one solution. 3.   Infinit

Linear Programming, describe phases of operations research study ?

describe phases of operations research study ?

Explain angle theorems, Explain Angle Theorems ? Certain angles and an...

Explain Angle Theorems ? Certain angles and angle pairs have special characteristics: Vertical angles are opposite angles formed by the intersection of two lines. Vertical ang

Find k to three decimal places, The population of a city is observed as gro...

The population of a city is observed as growing exponentially according to the function P(t) = P0 e kt , where the population doubled in the first 50 years. (a) Find k to three

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd