Example on eulers method, Mathematics

Assignment Help:

For the initial value problem

y' + 2y = 2 - e-4t, y(0) = 1

By using Euler's Method along with a step size of h = 0.1 to get approximate values of the solution at t = 0.1, 0.2, 0.3, 0.4, and 0.5. Compare them to the accurate values of the solution as such points.

Solution

It is a fairly simple linear differential equation thus we'll leave it to you to check that the solution as

y(t) = 1 + ½ e-4t - ½ e-2t

Thus as to use Euler's Method we first want to rewrite the differential equation in the form specified in (1).

y'= 2 - e-4t-2y

From that we can notice that f (t, y ) = 2 - e-4t  - 2y.  Also see that t = 0 and y0 = 1.  We can here start doing many computations.

fo = f(0,1) = 2 - e-4(0)  - 2(1) = -1

y1 = y0 + h f0 = 1 (0.1) (-1) = 0.9

Therefore, the approximation to the solution at t1 = 0.1 is y1 = 0.9.

At the next step we contain

f1 = f(0.1,0.9) = 2 - e-4(0.1)  - 2(0.9) = -0.470320046

y2 = y1 + h f1 = 0.9 + (0.1) (-0.470320046) = 0.852967995

Therefore, the approximation to the solution at t2 = 0.2 is y2 = 0.852967995.

I'll leave this to you to verify the remainder of these calculations.

 f2  =-0.155264954,     y3  = 0.837441500

f3  =0.023922788,        y4  = 0.839833779

f4  =0.1184359245,      y5  = 0.851677371

Here's a rapid table which gives the approximations and also the exact value of the solutions at the specified points.

Time, tn

Approximation

Exact

Error

t0 = 0 t1 = 0.1 t2 = 0.2 t3 = 0.3 t4 = 0.4 t5 = 0.5

y0 =1

y1 =0.9

y2 =0.852967995

y3 =0.837441500

y4 =0.839833779

y5 =0.851677371

y(0) = 1

y(0.1) = 0.925794646

y(0.2) = 0.889504459 y(0.3) = 0.876191288 y(0.4) = 0.876283777 y(0.5) = 0.883727921

0 %

2.79 %

4.11 %

4.42 %

4.16 %

3.63 %

We've also comprised the error as a percentage. It's frequently easier to notice how well an approximation does whether you look at percentages. The formula for that is,

 Percent error = (|exact - approximate|/exact) - 100

We utilized absolute value in the numerator because we actually don't care at this point if the approximation is smaller or larger than the exact. We're merely interested in how close the two are.

The maximum error in the approximations from the previous illustration was 4.42 percent that isn't too bad, although also isn't all that great of an approximation. Thus, provided we aren't after very correct approximations such didn't do too badly. This type of error is commonly unacceptable in almost all actual applications though. Consequently, how can we get better approximations?

By using a tangent line recall that we are getting the approximations to approximate the value of the solution and which we are moving forward in time through steps of h. Therefore, if we need a more accurate approximation, so it seems like one manner to get a better approximation is to not move forward as much along with each step. Conversely, take smaller h's.


Related Discussions:- Example on eulers method

Write down those features of such interactions, After seeing some children ...

After seeing some children interacting naturally, write down those features of such interactions that make peer learning potentially a better way of learning. Another point that

Help, I really need help with 30 60 90 right triangles and my last tutor di...

I really need help with 30 60 90 right triangles and my last tutor did not make sense to me so can you please help

Taylor series, If f(x) is an infinitely differentiable function so the Tayl...

If f(x) is an infinitely differentiable function so the Taylor Series of f(x) about x=x 0 is, Recall that, f (0) (x) = f(x) f (n) (x) = nth derivative of f(x)

Find the constant rate of 0.01 , Two people are 50 feet separately.  One of...

Two people are 50 feet separately.  One of them begin walking north at rate so that the angle illustrated in the diagram below is changing at constant rate of 0.01 rad/min. At what

DIFFERENTIAL EQUATIONS, WHICH LIFE PROBLEMS CAN BE SOLVED USING THE KNOWLED...

WHICH LIFE PROBLEMS CAN BE SOLVED USING THE KNOWLEDGE OF DIFFERNTIAL EQUATIONS?

Positive integer, (a)   Specify that  the sum of  the degrees  of all verti...

(a)   Specify that  the sum of  the degrees  of all vertices of a graph  is double the number of edges  in  the graph.                            (b)  Let G be a non directed gra

Solving an equation problems, Temperature: On one day in Fairfield, Montana...

Temperature: On one day in Fairfield, Montana the temperature dropped 80 degree fahrenheit from noon to midnight. If the temperature at midnight was -21 degree fahrenheit, write an

Complex number, The points A,B,C and D represent the numbers Z1,Z2,Z3 and Z...

The points A,B,C and D represent the numbers Z1,Z2,Z3 and Z4.ABCD is rhombus;AC=2BD.if  Z2=2+i ,Z4=1-2i,find Z1 and Z3 Ans) POI of diagonals: (3-i)/2. Using concept of rotation:

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd