Example of optimization , Mathematics

Assignment Help:

A piece of pipe is carried down a hallway i.e 10 feet wide.  At the ending of the hallway the there is a right-angled turn & the hallway narrows down to 8 feet wide. What is the longest pipe which can be carried (always keeping it horizontal) around the turn in the hallway?

Solution

Let's begin with a sketch of the situation therefore we can obtain a grip on what's going on and how we will solve this.

345_tanglent1.png

The largest pipe which can go around the turn will do therefore in the position illustrates above.  One end will be touching the outer wall of the hall way at A & C and the pipe will contact the inner corner at B. Let's suppose that the length of the pipe in the little hallway is Lwhile L2  is the length of the pipe into the large hallway. Then the pipe has a length of L = L1 + L2 .

Now, if θ = 0 then the pipe is totally in the wider hallway and we can illustrates that as θ → 0

54_tanglent.png

then L → ∞ .  Similarly, if θ = ∏/2 the pipe is totally in the narrow hallway and as θ → ∏/2   we also have L → ∞ .  Therefore, somewhere in the interval 0 < θ < ∏/2    is an angle that will minimize L and oddly sufficient i.e. the length that we're after. The largest pipe which will fit around the turn will actually be the minimum value of L.

The constraint for this problem is not so obvious and there are in fact two of them.  The constraints for this difficulty are the widths of the hallways.  We'll utilize these to obtain an equation for L in terms of θ & then we'll minimize this new equation.

Therefore, by using basic right triangle trig we can illustrates that,

L1 = 8 sec θ           L2  = 10 csc θ        ⇒       L = 8 sec θ + 10 csc θ

Therefore, differentiating L gives,

                           L′ = 8 sec θ tan θ -10 csc θ cot θ

Setting this equivalent to zero and solving out specified,

                    8 sec θ tan θ = 10 csc θ cot θ

sec θ tan θ /csc θ cot θ = 10/8

sin θ tan2 θ /cos θ =5/4           ⇒         tan3 θ = 1.25

Solving for θ gives,

Therefore, if θ = 0.8226 radians then the pipe will contain a minimum length and will just fit around the turn. Anything larger will not fit about the turn that's why the largest pipe that can be carried around the turn is,

                              L = 8 sec (0.8226 ) + 10 csc (0.8226) = 25.4033 feet


Related Discussions:- Example of optimization

Geometric progression (g.p.), Learning geometric progression ...

Learning geometric progression vis-á-vis arithmetic progression should make it easier. In geometric progression also we denote the first t

Ratio, There are only Chinese and Malay pupils in a hall.The ratio of the n...

There are only Chinese and Malay pupils in a hall.The ratio of the number of boys to the number of girls is 2:3.The ratio of the number of Chinese boys to the number of Malay boys

Example of addition, Example 1 Add 4x 4 + 3x 3 - ...

Example 1 Add 4x 4 + 3x 3 - x 2 + x + 6 and -7x 4 - 3x 3 + 8x 2 + 8x - 4 We write them one below the other as shown below.

Math help, What fraction of the full price will you pay for 2 shirts? 3 4 ...

What fraction of the full price will you pay for 2 shirts? 3 4 11 2 $45.001 2 .

Calculate the volume and surface area of a sphere, Calculate the volume and...

Calculate the volume and surface area of a sphere: Calculate the volume and surface area of a sphere with r = 4".  Be sure to include units in your answer. Solution: V

Evaluate limit in l''hospital''s rule form, Evaluate the below given limit....

Evaluate the below given limit. Solution Note as well that we actually do have to do the right-hand limit here. We know that the natural logarithm is just described fo

How to add mixed numbers, Q. How to Add Mixed Numbers? Ans. If you...

Q. How to Add Mixed Numbers? Ans. If you have to add mixed numbers, you might try this method first: First rewrite the mixed number as a whole number plus a fracti

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd