Example of optimization , Mathematics

Assignment Help:

A piece of pipe is carried down a hallway i.e 10 feet wide.  At the ending of the hallway the there is a right-angled turn & the hallway narrows down to 8 feet wide. What is the longest pipe which can be carried (always keeping it horizontal) around the turn in the hallway?

Solution

Let's begin with a sketch of the situation therefore we can obtain a grip on what's going on and how we will solve this.

345_tanglent1.png

The largest pipe which can go around the turn will do therefore in the position illustrates above.  One end will be touching the outer wall of the hall way at A & C and the pipe will contact the inner corner at B. Let's suppose that the length of the pipe in the little hallway is Lwhile L2  is the length of the pipe into the large hallway. Then the pipe has a length of L = L1 + L2 .

Now, if θ = 0 then the pipe is totally in the wider hallway and we can illustrates that as θ → 0

54_tanglent.png

then L → ∞ .  Similarly, if θ = ∏/2 the pipe is totally in the narrow hallway and as θ → ∏/2   we also have L → ∞ .  Therefore, somewhere in the interval 0 < θ < ∏/2    is an angle that will minimize L and oddly sufficient i.e. the length that we're after. The largest pipe which will fit around the turn will actually be the minimum value of L.

The constraint for this problem is not so obvious and there are in fact two of them.  The constraints for this difficulty are the widths of the hallways.  We'll utilize these to obtain an equation for L in terms of θ & then we'll minimize this new equation.

Therefore, by using basic right triangle trig we can illustrates that,

L1 = 8 sec θ           L2  = 10 csc θ        ⇒       L = 8 sec θ + 10 csc θ

Therefore, differentiating L gives,

                           L′ = 8 sec θ tan θ -10 csc θ cot θ

Setting this equivalent to zero and solving out specified,

                    8 sec θ tan θ = 10 csc θ cot θ

sec θ tan θ /csc θ cot θ = 10/8

sin θ tan2 θ /cos θ =5/4           ⇒         tan3 θ = 1.25

Solving for θ gives,

Therefore, if θ = 0.8226 radians then the pipe will contain a minimum length and will just fit around the turn. Anything larger will not fit about the turn that's why the largest pipe that can be carried around the turn is,

                              L = 8 sec (0.8226 ) + 10 csc (0.8226) = 25.4033 feet


Related Discussions:- Example of optimization

How much more does she required to sell to meet her goal, Hanna's sales tar...

Hanna's sales target for the week is $5,000. So far she has sold $3,574.38 worth of merchandise. How much more does she required to sell to meet her goal? You must ?nd out the

Product moment coefficient, Product Moment Coefficient This gives an i...

Product Moment Coefficient This gives an indication of the strength of the linear relationship among two variables. Note that this formula can be rearranged to have di

Calculus, what is a domain of a function?

what is a domain of a function?

#title.automotive cruise control system., What are some of the interestingm...

What are some of the interestingmodern developments in cruise control systems that contrast with comparatively basic old systems

Children have their own strategies for learning maths, Children Have Their ...

Children Have Their Own Strategies For Learning Vibhor, aged 7, was once asked if he knew what 'seven lots of eight' are. He said he didn't. He was then asked, "Can you work it

Find the value a2 + ß2 and (a - ß)2, If  α,β are the zeros of the polynom...

If  α,β are the zeros of the polynomial 2x 2 - 4x + 5 find the value of a) α 2 + β 2   b) (α - β) 2 . Ans : p (x) = 2 x 2 - 4 x + 5           (Ans: a) -1 , b) -6) α + β =

NOWA method, solve the equation 540+115 using the NOWA method

solve the equation 540+115 using the NOWA method

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd