Example of optimization , Mathematics

Assignment Help:

A piece of pipe is carried down a hallway i.e 10 feet wide.  At the ending of the hallway the there is a right-angled turn & the hallway narrows down to 8 feet wide. What is the longest pipe which can be carried (always keeping it horizontal) around the turn in the hallway?

Solution

Let's begin with a sketch of the situation therefore we can obtain a grip on what's going on and how we will solve this.

345_tanglent1.png

The largest pipe which can go around the turn will do therefore in the position illustrates above.  One end will be touching the outer wall of the hall way at A & C and the pipe will contact the inner corner at B. Let's suppose that the length of the pipe in the little hallway is Lwhile L2  is the length of the pipe into the large hallway. Then the pipe has a length of L = L1 + L2 .

Now, if θ = 0 then the pipe is totally in the wider hallway and we can illustrates that as θ → 0

54_tanglent.png

then L → ∞ .  Similarly, if θ = ∏/2 the pipe is totally in the narrow hallway and as θ → ∏/2   we also have L → ∞ .  Therefore, somewhere in the interval 0 < θ < ∏/2    is an angle that will minimize L and oddly sufficient i.e. the length that we're after. The largest pipe which will fit around the turn will actually be the minimum value of L.

The constraint for this problem is not so obvious and there are in fact two of them.  The constraints for this difficulty are the widths of the hallways.  We'll utilize these to obtain an equation for L in terms of θ & then we'll minimize this new equation.

Therefore, by using basic right triangle trig we can illustrates that,

L1 = 8 sec θ           L2  = 10 csc θ        ⇒       L = 8 sec θ + 10 csc θ

Therefore, differentiating L gives,

                           L′ = 8 sec θ tan θ -10 csc θ cot θ

Setting this equivalent to zero and solving out specified,

                    8 sec θ tan θ = 10 csc θ cot θ

sec θ tan θ /csc θ cot θ = 10/8

sin θ tan2 θ /cos θ =5/4           ⇒         tan3 θ = 1.25

Solving for θ gives,

Therefore, if θ = 0.8226 radians then the pipe will contain a minimum length and will just fit around the turn. Anything larger will not fit about the turn that's why the largest pipe that can be carried around the turn is,

                              L = 8 sec (0.8226 ) + 10 csc (0.8226) = 25.4033 feet


Related Discussions:- Example of optimization

2+2=5, How could 2+2 will be Equal to 5

How could 2+2 will be Equal to 5

Probability, Mike sells on the average 15 newspapers per week (Monday – Fri...

Mike sells on the average 15 newspapers per week (Monday – Friday). Find the probability that 2.1 In a given week he will sell all the newspapers [7] 2.2 In a given day he will

Higher-order derivatives, Higher-Order Derivatives It can be se...

Higher-Order Derivatives It can be seen that the derivative of a function is also a function. Considering f'x as a function of x, we can take the derivative

FRACTION, HOW TO ADD MIXED FRACTION

HOW TO ADD MIXED FRACTION

Fraccions, multiply 9/19 times 95/7

multiply 9/19 times 95/7

2 step equations, What is a two step equation that equals 8 ?

What is a two step equation that equals 8 ?

Arithmetic mean, When three quantities are in A.P., then the middle...

When three quantities are in A.P., then the middle one is said to be the arithmetic  mean of the other two. That is, if a, b and c are in A.P., then b is th

Write down the system of differential equations, Write down the system of d...

Write down the system of differential equations for mass system and the spring above. Solution To assist us out let's first take a rapid look at a situation wherein both of

What percent the girls surveyed said that area hockey sport, 450 girls were...

450 girls were surveyed about their favorite sport, 24% said in which basketball is their favorite sport, 13% said in which ice hockey is their favorite sport, and 41% said which s

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd