Arithmetic progression (a.p.), Mathematics

Assignment Help:

A series is said to be in Arithmetic Progression (A.P.) if the consecutive numbers in the series differs by a constant value. This constant value is referred to as "common difference". The series in which the consecutive terms increases by a constant quantity, is referred to as an increasing series and if the terms decrease by a constant quantity it is referred to as a decreasing series. The series

                            3, 7, 11, 15, 19, .............

is an example of increasing series, while the one like

                            8, 2, -4, .........

is an example of decreasing series.

In an A.P. the first number is denoted by "a" and the common difference is denoted by "d". If we know the values of a and d, it is quite easy to get the terms of the Arithmetic Progression. In terms of a and d, the consecutive terms of arithmetic progression are

                   a, a + d, a + 2d, a + 3d, ......... a + nd

We observe that the first term is a, the second term is a + d, the third term being a + 2d. The point to note is that for the first term the coefficient of d is zero, for the second term it is one and for the third term it is 2. By observing this pattern can we conclude that the coefficient of nth term is n - 1? Yes, we can. In fact, the nth term is given by

                    Tn  = a + (n - 1)d

Generally the Tn  which is the last term is also denoted by "l" (small alphabet 'l'). That is, l = a + (n - 1)d.

Now let us look at an example.

Example 

If the first term of an A.P. 'a' = 3 and the common difference 'd' = 2, what are the first five terms of the series and what would be the nth term? They are calculated as follows. We know that

                   T1     = a                = 3

                   T2     = a + d           = 3 + 2 = 5

                   T3     = a + 2d         = 3 + 2(2) = 7

                   T4     = a + 3d         = 3 + 3(2) = 9

                   T5     = a + 4d         = 3 + 4(2) = 11

                   :                                          :
                   :                                          :

           l = Tn        = a + (n - 1)d  = 3 + (n - 1)(2)

                                                = 3 + 2n - 2

                                                = 2n + 1


Related Discussions:- Arithmetic progression (a.p.)

Fundamental theorem of calculus, Fundamental Theorem of Calculus, Part II ...

Fundamental Theorem of Calculus, Part II Assume f ( x ) is a continuous function on [a,b] and also assume that F ( x ) is any anti- derivative for f ( x ) . Then,

2+2=5, How could 2+2 will be Equal to 5

How could 2+2 will be Equal to 5

Hello, I am here to tell you, Alex has a cold.

I am here to tell you, Alex has a cold.

Marketing., what is product life cycle

what is product life cycle

Applications of derivatives rate change, Application of rate change Bri...

Application of rate change Brief set of examples concentrating on the rate of change application of derivatives is given in this section.  Example    Find out all the point

One integer is two more than another what is greater integer, One integer i...

One integer is two more than another. The sum of the lesser integer and double the greater is 7. What is the greater integer? Let x = the greater integer and y = the lesser int

Calculate the gains from trade, Table shows the productivity for the countr...

Table shows the productivity for the countries Pin and Pang. 1) If the working population of Pin and Pang are both 6 million, divided equally between the two industries in

Imaginay Number, how to solve imaginary number such as like (-3v-5)² ?? Can...

how to solve imaginary number such as like (-3v-5)² ?? Can I cancel the radical sign and the power of two ? and square the -3 and times to -5 ? hope you will answer this :) thanks

Operation on polynomial, Perform the denoted operation for each of the foll...

Perform the denoted operation for each of the following.  (a) Add 6x 5 -10x 2 + x - 45 to 13x 2 - 9 x + 4 .   (b) Subtract 5x 3 - 9 x 2 + x - 3 from       x 2+ x +1.

Poisson mathematical properties, Poisson Mathematical Properties 1. Th...

Poisson Mathematical Properties 1. The expected or mean value = np = λ Whereas; n = Sample Size p = Probability of success 2. The variance = np = ? 3. Standard dev

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd