Purely imaginary number, Mathematics

Assignment Help:

It is totally possible that a or b could be zero and thus in 16i the real part is zero.  While the real part is zero we frequently will call the complex numbers a purely imaginary number.

 In the last example (113) the imaginary part is zero and actually we have a real number.  Thus, thinking of numbers in this light we can see that the real numbers are simply a subset of the complex numbers.


Related Discussions:- Purely imaginary number

Sequences - calculus, Sequences Let us start off this section along wi...

Sequences Let us start off this section along with a discussion of just what a sequence is. A sequence is nothing much more than a list of numbers written in a particular orde

Real constant and difference equation, Derive for the filter from z=a and p...

Derive for the filter from z=a and poles at z=b andz=c, where a, b, c are the real constants the corresponding difference equation. For what values of parameters a, b, and c the fi

integral 0 to pi e^cosx cos (sinx) dx, Let u = sin(x). Then du = cos(x) dx...

Let u = sin(x). Then du = cos(x) dx. So you can now antidifferentiate e^u du. This is e^u + C = e^sin(x) + C.  Then substitute your range 0 to pi. e^sin (pi)-e^sin(0) =0-0 =0

Derive the marshalian demand functions, (a) Derive the Marshalian demand fu...

(a) Derive the Marshalian demand functions for the following utility function: u(x 1 ,x 2 ,x 3 ) = x 1 + δ ln(x 2 )       x 1 ≥ 0, x 2 ≥ 0 Does one need to consider the is

Word problem in algebra, robin runs 5 kilometers around the campus in the s...

robin runs 5 kilometers around the campus in the same length of time as he can walk 3 kilometers from his house to school. If he runs 4 kilometers per hour faster than he walks, ho

Show that of all right triangles inscribed in a circle, Show that of all ri...

Show that of all right triangles inscribed in a circle, the triangle with maximum perimeter is isosceles.

Step functions, Before going to solving differential equations we must see ...

Before going to solving differential equations we must see one more function. Without Laplace transforms this would be much more hard to solve differential equations which involve

Graph and algebraic methods , To answer each question, use the function t(r...

To answer each question, use the function t(r) = d , where t is the time in hours, d is the distance in miles, and r is the rate in miles per hour. a. Sydney drives 10 mi at a c

Explain basic concepts of parallel lines, Explain Basic Concepts of Paralle...

Explain Basic Concepts of Parallel Lines ? Parallel lines are defined in section 1.2 and we use "//" to denote it. From the definition, we can get the following two consequenc

Comparison test for improper integrals - integration, Comparison Test for I...

Comparison Test for Improper Integrals Here now that we've seen how to actually calculate improper integrals we should to address one more topic about them.  Frequently we ar

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd