Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
A parent shows his child four pencils. He places them in a row in front of her and says "one" as he points to the first pencil, "two" as he points to the second one, "three" as he points to the third one, and "four" as he points to the fourth. He repeats this for the child. Then, with an encouraging smile he asks, "Now give me two pencils!" The child picks up the second pencil in the law and gives it to him. She is quite baffled when the parent says, "No child! I said two pencils. Here (adding another pencil), now they are two." "Are /they?", wonders the child. "But did not he just say that that pencil was 'two' ?"
Why do you think the child in the example above was confused ?
Think about what happens when we set number names and objects in one-to one correspondence. We use the (number names as temporary labels for the objects. In the example-above, the pencil has nothing in common with the number "two"; it is just the second object in the ordered row of objects. But when we say "Give me two pencils", we expect the child to mentally separate the label "two" from the second pencil, and then dissociate it with any two pencils. This way of using number names in two ways is quite confusing to a child who is just beginning to deal with numbers. How can we sort out this confusion?
Why don't you try an exercise now?
What is shares and dividends?
Bikes are on sale for 30% off the original price. What percent of the original price will the customer pay if he gets the bike at the sale price? The original price of the bike
An integer is chosen at random from the first two hundreds digit. What is the probability that the integer chosen is divisible by 6 or 8. (Ans : 1/4 ) Ans:
nC6:n-3C3=91:4
A,B,C are natural numbers and are in arithmetic progressions and a+b+c=21.then find the possible values for a,b,c Solution) a+b+c=21 a+c=2b 3b=21 b=7 a can be 1,2,3,4,5,6 c c
log8-log3
Two circles touch externally. The sum of their areas is 58 π cm 2 and the distance between their centres is 10 cm. Find the radii of the two circles. (Ans:7cm, 3cm) Ans:
Need two equal fractions multiply and divide 1/6 3/4 5/15 2/7 20/25 24/36 4/9
find the modulus Z=(2-i)(5+i12)/(1+i2)^3
Find out some solutions to y′′ - 9 y = 0 Solution We can find some solutions here simply through inspection. We require functions whose second derivative is 9 times the
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd