Example for articulate reasons and construct arguments, Mathematics

Assignment Help:

A Class 4 teacher was going to teach her class fractions. At the beginning of the term she asked the children, "If you had three chocolates, and wanted to divide them equally among five people, how would you do it?" Most of the children could think of one or more ways of doing this. By the end of the term, when the children had been taught how to deal with fractions, the teacher again asked them the same question. And this time, most of the children couldn't do it! Instead of reality and their own common sense, they now had "rules", which they could never understand or remember how to apply.

 Reversibility: the principle that action taken on objects, if reversed in sequence, will return the object to its original state.

 Conservation: the principle that quantity (number, mass, liquid) remains the same regardless of the spatial shape it may assume.

This example reminds us that only supplying readymade rules to children, without explaining why the rules work, usually blocks their thinking. Often, if children are encouraged to see patterns themselves, they find it easy to accept the formal rules of arithmetic that you may be trying to teach them.

Coming to symbols, various experimental studies show that even children as old as 9 have difficulty in representing the operations of addition and subtraction (+ and - signs). Most primary schoolchildren are uncomfortable with the conventional operator signs of arithmetic. This is because symbols (and algorithms, etc.) are taught in a way that makes no sense to the children, as they are not related to the children's reality. Therefore, the mechanics of dealing with the symbols, etc., doesn't interest them.

What can we do to help our learners acquire abstract concepts? To begin with, we mast remember that no amount of explanation will enable any of us to relate an unfamiliar symbol system with reality. We must go the other way, that is, from concrete examples to the symbol system. Relating abstract concepts and symbols to the everyday experiences of our learners seems to be the easiest way to learn/teach them. Indeed, we all learn this way. Or don't we? Try the following activity and judge for yourself.

E1) Add 4 and 5 in base 5. What processes did you follow in making sense of this task? What difficulties did you face? Do you think the task of a learner beginning to learn mathematics is more or less difficult than this?

While doing this exercise, how much of the difficulty that you faced was because you felt that you didn't have enough previous knowledge to do the task? The point brought out by this question is important, namely, the readiness of the learner to comprehend a particular concept or to do a particular task. For example, Class 2 children cannot completely grasp the idea that the digit 2 in 26 means 20, even though they can write and recognise 26 and can also identify it as a number smaller than 62. But the teachers often assume that the children have understood the concept of place value, and force them to start solving problems with "large" numbers by using standard algorithms. This is of no pedagogic value. In fact, teaching children strategies and methods of solving problems that they are not ready for stops them from thinking, simply because they get preoccupied with the mechanical task of arriving at an answer.

What we have discussed so far also adds weight to the following observation of child psychologists.


Related Discussions:- Example for articulate reasons and construct arguments

Mathematical sequences, The number of seats in each row can be modeled by t...

The number of seats in each row can be modeled by the formula C_n = 16 + 4n, when n refers to the nth row, and you need 50 rows of seats. (a) Write the sequence for the numb

Solving decimal equations, The distance around a square photograph is 12.8 ...

The distance around a square photograph is 12.8 centimeters. What is the langth of each side of the fotograph?

Find the lesser of two consecutive positive even integers, Find the lesser ...

Find the lesser of two consecutive positive even integers whose product is 168. Let x = the lesser even integer and let x + 2 = the greater even integer. Because product is a k

Trig, I need help with this question: Find the probability that two quarter...

I need help with this question: Find the probability that two quarters and a nickel are chosen without replacement from a bag of 8 quarters and 12 nickles.

Pigeonhole principle, By pigeonhole principle, show that if any five number...

By pigeonhole principle, show that if any five numbers from 1 to 8 are chosen, then two of them will add upto 9.    Answer: Let make four groups of two numbers from 1 to 8 like

Dr.., I need some material on Bachet equation

I need some material on Bachet equation

Randomly chosen boy can run this race in 302 sec, School run known to posse...

School run known to possess normal distribution with mean 440 sec & SD 60 sec. What is probability that randomly chosen boy can run this race in 302 sec.

Math 100, introduction to decimals

introduction to decimals

The appropriate resource constraint, Consider a person's decision problem i...

Consider a person's decision problem in trying to decide how many children to have. Although she cares about children and would like to have as many as possible, she knows that chi

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd