Evaluate the integral - trig substitutions, Mathematics

Assignment Help:

Example of Trig Substitutions

Evaluate the subsequent integral.

∫ √((25x2 - 4) / x) (dx)

Solution

In this type of case the substitution u = 25x2 - 4 will not work and so we are going to must do something dissimilar for this integral.

It would be great if we could get rid of the square root someway. The following substitution will do that for us.

X = 2/5 sec θ

Do not be anxious about where this came from at this point. As we work with this problem you will see that it works and that if we have a identical type of square root in the problem we can all time make use of a similar substitution. Previous to we actually do the substitution though let's confirm the claim that this will permit us to get rid of the square root.

965_Evaluate the integral - Trig Substitutions 1.png

To get relieve of the square root all we require to do is recall the relationship,

tan2 θ + 1 = sec2 θ  ⇒ sec2 θ -1 = tan2 θ

By using this detail the square root becomes,

√(25x2 - 4) = 2 √tan2 θ = 2|tan θ |

Note the existence of the absolute value bars there. These are significant.  Recall that

√x2 = |x|

There should all time be absolute value bars at this stage.  If we knew that tan θ was all time positive or all time negative we could remove the absolute value bars using,

|x| = x= if x > 0 or -x if x<0

With no limits we won't be capable to ascertain if tan θ is positive or negative, though, we will requires to eliminate them in order to do the integral. Hence, as we are doing an indefinite integral we will presume that tan θ will be positive and thus we can drop the absolute value bars. This illustrates,

√(25x2 - 4) = 2 tan θ

Thus, we were able to remove the square root by using this substitution.  Let's now do the substitution and see what we obtain.  In doing the substitution remember that we'll as well need to substitute for the dx. This is easy enough to get from the substitution.

935_Evaluate the integral - Trig Substitutions 2.png

x = 2/5 sec θ ⇒ dx = 2/5 sec θ tan θ d θ

By using this substitution the integral becomes,

1766_Evaluate the integral - Trig Substitutions 3.png

With this kind of substitution we were capable to eliminate the given integral to an integral involving trig functions and we saw how to do these problems in the preceding section.  Let's end the integral.

∫ √ (25x2 - 4)/x (dx) = 2∫ sec2 θ - 1d θ

=2(tan θ - θ) + c

Thus, we've got an answer for the integral.  Regrettably the answer isn't given in x's as it should be.  Thus, we require to write our answer in terms of x. We can do this along with some right triangle trig. From our original substitution we comprise,

sec θ = 5x/2 = hypotenuse / adjacent

This provides the following right triangle.

1212_Evaluate the integral - Trig Substitutions 4.png

From this we can see that,

tan θ = √((25x2 - 4) / 2)

We can deal along with the θ in one of any range of ways.  From our substitution we can see that,

θ = sec-1 (5x/2)

While this is a completely acceptable technique of dealing with the we can make use of any of the possible six inverse trig functions and as sine and cosine are the two trig functions most people are known with we will generally use the inverse sine or inverse cosine. In this case we will use the inverse cosine.

θ = cos-1 (2/5x)

Thus, with all of this the integral becomes

2208_Evaluate the integral - Trig Substitutions 5.png

We now have the solution back in terms of x.


Related Discussions:- Evaluate the integral - trig substitutions

Real numbers on every line, Make a file called "testtan.dat" which has 2 li...

Make a file called "testtan.dat" which has 2 lines, with 3 real numbers on every line (some negative, some positive, in the range from-1 to 3).  The file can be formed from the edi

Two consecutive integers is 15 find out the larger integer, If the differen...

If the difference among the squares of two consecutive integers is 15 find out the larger integer. Let x = the lesser integer and let x + 1 = the greater integer. The sentence,

Determine the property of join in a boolean algebra, Determine that in a Bo...

Determine that in a Boolean algebra, for any a and b, (a Λ b) V (a Λ b' ) = a.  Ans: This can be proved either by using the distributive property of join over meet (or of mee

Build an equation for a hyperboloid of two sheets, 1. Build an equation for...

1. Build an equation for a hyperboloid of two sheets with the following properties: a. The central axis of the hyperboloid is the y-axis b. The two sheets are 4 units apart, an

The bionomial theorem for rational index, use the bionomial theorem to expa...

use the bionomial theorem to expand x+2/(2-X)(WHOLE SQUARE 2)

If she mails 1, Lucy's Lunch is sending out flyers and pays a bulk rate of ...

Lucy's Lunch is sending out flyers and pays a bulk rate of 14.9 cents per piece of mail. If she mails 1,500 flyers, what will she pay? Multiply the price per piece through the

Find area of y = 2 x2 + 10 and y = 4 x + 16, Find out the area of the regio...

Find out the area of the region bounded by y = 2 x 2 + 10 and y = 4 x + 16 . Solution In this case the intersection points (that we'll required eventually) are not going t

Vectors, A plane is flying at 200 mph with a heading of 45degrees and encou...

A plane is flying at 200 mph with a heading of 45degrees and encounters a wind mph from the west. What is the velocity and heading?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd