Evaluate the integral - trig substitutions, Mathematics

Assignment Help:

Example of Trig Substitutions

Evaluate the subsequent integral.

∫ √((25x2 - 4) / x) (dx)

Solution

In this type of case the substitution u = 25x2 - 4 will not work and so we are going to must do something dissimilar for this integral.

It would be great if we could get rid of the square root someway. The following substitution will do that for us.

X = 2/5 sec θ

Do not be anxious about where this came from at this point. As we work with this problem you will see that it works and that if we have a identical type of square root in the problem we can all time make use of a similar substitution. Previous to we actually do the substitution though let's confirm the claim that this will permit us to get rid of the square root.

965_Evaluate the integral - Trig Substitutions 1.png

To get relieve of the square root all we require to do is recall the relationship,

tan2 θ + 1 = sec2 θ  ⇒ sec2 θ -1 = tan2 θ

By using this detail the square root becomes,

√(25x2 - 4) = 2 √tan2 θ = 2|tan θ |

Note the existence of the absolute value bars there. These are significant.  Recall that

√x2 = |x|

There should all time be absolute value bars at this stage.  If we knew that tan θ was all time positive or all time negative we could remove the absolute value bars using,

|x| = x= if x > 0 or -x if x<0

With no limits we won't be capable to ascertain if tan θ is positive or negative, though, we will requires to eliminate them in order to do the integral. Hence, as we are doing an indefinite integral we will presume that tan θ will be positive and thus we can drop the absolute value bars. This illustrates,

√(25x2 - 4) = 2 tan θ

Thus, we were able to remove the square root by using this substitution.  Let's now do the substitution and see what we obtain.  In doing the substitution remember that we'll as well need to substitute for the dx. This is easy enough to get from the substitution.

935_Evaluate the integral - Trig Substitutions 2.png

x = 2/5 sec θ ⇒ dx = 2/5 sec θ tan θ d θ

By using this substitution the integral becomes,

1766_Evaluate the integral - Trig Substitutions 3.png

With this kind of substitution we were capable to eliminate the given integral to an integral involving trig functions and we saw how to do these problems in the preceding section.  Let's end the integral.

∫ √ (25x2 - 4)/x (dx) = 2∫ sec2 θ - 1d θ

=2(tan θ - θ) + c

Thus, we've got an answer for the integral.  Regrettably the answer isn't given in x's as it should be.  Thus, we require to write our answer in terms of x. We can do this along with some right triangle trig. From our original substitution we comprise,

sec θ = 5x/2 = hypotenuse / adjacent

This provides the following right triangle.

1212_Evaluate the integral - Trig Substitutions 4.png

From this we can see that,

tan θ = √((25x2 - 4) / 2)

We can deal along with the θ in one of any range of ways.  From our substitution we can see that,

θ = sec-1 (5x/2)

While this is a completely acceptable technique of dealing with the we can make use of any of the possible six inverse trig functions and as sine and cosine are the two trig functions most people are known with we will generally use the inverse sine or inverse cosine. In this case we will use the inverse cosine.

θ = cos-1 (2/5x)

Thus, with all of this the integral becomes

2208_Evaluate the integral - Trig Substitutions 5.png

We now have the solution back in terms of x.


Related Discussions:- Evaluate the integral - trig substitutions

''t'' distribution, The 't' distribution is a theoretical probability distr...

The 't' distribution is a theoretical probability distribution. The 't' distribution is symmetrical, bell-shaped, and to some extent similar to the standard normal curve. It has an

Positive real exponents, Simplify following and write the answers with only...

Simplify following and write the answers with only positive exponents.  (a) ( x 8.2 y -0.26 z 2 ) 0.5  (b)  (x 3 y -4.1   / x -2.7 ) -3 Solution  (a) (x 8.2

Construct a tangent to a circle of radius, 1.  Draw a pair of tangents to a...

1.  Draw a pair of tangents to a circle of radius 2cm that are inclined to each other at an angle of 900. 2.  Construct a tangent to a circle of radius 2cm from a point on the c

Problem solving involving quadratic equations, a painting is 20 cm wider th...

a painting is 20 cm wider than its height. its area is 2400 centimeter squared. find its lenght and width

Express the statement as a disjunction in dnf, State the following statemen...

State the following statement as a disjunction (in DNF) as well using quantifiers:      There does not exit a woman who has taken a flight on each airline in the world.

MATLAB, Program of "surface of revolution" in MATLAB

Program of "surface of revolution" in MATLAB

Limit properties, Limit Properties :  The time has almost come for us t...

Limit Properties :  The time has almost come for us to in fact compute some limits.  Though, before we do that we will require some properties of limits which will make our lif

Find the middle term of the arithmetic progressions, Find the middle term o...

Find the middle term of the AP 1, 8, 15....505. A ns:    Middle terms a + (n-1)d = 505 a + (n-1)7 = 505 n - 1 = 504/7 n = 73 ∴ 37th term is middle term a 37

Differential equations, Verify Liouville''s formula for y "-y" - y'' + y = ...

Verify Liouville''s formula for y "-y" - y'' + y = 0 in (0, 1) ?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd