Evaluate the integral - trig substitutions, Mathematics

Assignment Help:

Example of Trig Substitutions

Evaluate the subsequent integral.

∫ √((25x2 - 4) / x) (dx)

Solution

In this type of case the substitution u = 25x2 - 4 will not work and so we are going to must do something dissimilar for this integral.

It would be great if we could get rid of the square root someway. The following substitution will do that for us.

X = 2/5 sec θ

Do not be anxious about where this came from at this point. As we work with this problem you will see that it works and that if we have a identical type of square root in the problem we can all time make use of a similar substitution. Previous to we actually do the substitution though let's confirm the claim that this will permit us to get rid of the square root.

965_Evaluate the integral - Trig Substitutions 1.png

To get relieve of the square root all we require to do is recall the relationship,

tan2 θ + 1 = sec2 θ  ⇒ sec2 θ -1 = tan2 θ

By using this detail the square root becomes,

√(25x2 - 4) = 2 √tan2 θ = 2|tan θ |

Note the existence of the absolute value bars there. These are significant.  Recall that

√x2 = |x|

There should all time be absolute value bars at this stage.  If we knew that tan θ was all time positive or all time negative we could remove the absolute value bars using,

|x| = x= if x > 0 or -x if x<0

With no limits we won't be capable to ascertain if tan θ is positive or negative, though, we will requires to eliminate them in order to do the integral. Hence, as we are doing an indefinite integral we will presume that tan θ will be positive and thus we can drop the absolute value bars. This illustrates,

√(25x2 - 4) = 2 tan θ

Thus, we were able to remove the square root by using this substitution.  Let's now do the substitution and see what we obtain.  In doing the substitution remember that we'll as well need to substitute for the dx. This is easy enough to get from the substitution.

935_Evaluate the integral - Trig Substitutions 2.png

x = 2/5 sec θ ⇒ dx = 2/5 sec θ tan θ d θ

By using this substitution the integral becomes,

1766_Evaluate the integral - Trig Substitutions 3.png

With this kind of substitution we were capable to eliminate the given integral to an integral involving trig functions and we saw how to do these problems in the preceding section.  Let's end the integral.

∫ √ (25x2 - 4)/x (dx) = 2∫ sec2 θ - 1d θ

=2(tan θ - θ) + c

Thus, we've got an answer for the integral.  Regrettably the answer isn't given in x's as it should be.  Thus, we require to write our answer in terms of x. We can do this along with some right triangle trig. From our original substitution we comprise,

sec θ = 5x/2 = hypotenuse / adjacent

This provides the following right triangle.

1212_Evaluate the integral - Trig Substitutions 4.png

From this we can see that,

tan θ = √((25x2 - 4) / 2)

We can deal along with the θ in one of any range of ways.  From our substitution we can see that,

θ = sec-1 (5x/2)

While this is a completely acceptable technique of dealing with the we can make use of any of the possible six inverse trig functions and as sine and cosine are the two trig functions most people are known with we will generally use the inverse sine or inverse cosine. In this case we will use the inverse cosine.

θ = cos-1 (2/5x)

Thus, with all of this the integral becomes

2208_Evaluate the integral - Trig Substitutions 5.png

We now have the solution back in terms of x.


Related Discussions:- Evaluate the integral - trig substitutions

Compute the probability of weather, Analysis of questionnaire completed by ...

Analysis of questionnaire completed by holiday makers showed that 0.75 classified their holiday as excellent at Malindi. The probability of hot weather in the resort is 0.6.  If th

Find the generating function, Find the generating function for the number o...

Find the generating function for the number of r-combinations of {3.a, 5.b, 2.c}          Ans:  Terms sequence is given as r-combinations of {3.a, 5.b, 2.c}. This can be writte

Quadratic equation, find a quadratic equation whose roots are q+1/2 and 2p-...

find a quadratic equation whose roots are q+1/2 and 2p-1 with p+q=1

Randy, write in factor form 9x3+9x5

write in factor form 9x3+9x5

SIMPLE INTEREST, A payday loan company charges a $95 fee for a $500 payday ...

A payday loan company charges a $95 fee for a $500 payday loan that will be repaid in 11 days. Treating the fee as interest paid, what is the equivalent annual interest rate?

Play and learn maths, PLAY AND LEARN :  Children can learn many basic math...

PLAY AND LEARN :  Children can learn many basic mathematical concepts through games. They enjoy Mathematical concepts can be playing within familiar contexts. Their games also gen

Combined mean and standard deviation -illustration, Combined mean Assu...

Combined mean Assume m be the combined mean Assume x 1 be the mean of first sample Assume x 2 be the mean of the second sample Assume n 1 be the size of the 1 st

Sum of their areas is given find radii of the two circles, Two circles touc...

Two circles touch externally. The sum of their areas is 58 π cm 2 and the distance between their centres is 10 cm. Find the radii of the two circles. (Ans:7cm, 3cm) Ans:

Calculate area of a square, The area of a square is given by the formula wi...

The area of a square is given by the formula width time's height. But since the square has all the sides equal, the height is of the same measure as its width. Hence its formula is

Relationship between the shortest path distances - tree, 1. a)  Given a dig...

1. a)  Given a digraph G = (V,E), prove that if we add a constant k to the length of every arc coming out from the root node r, the shortest path tree remains the same.  Do this by

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd