Evaluate the definite integral, Mathematics

Assignment Help:

Evaluate the given definite integral.

1733_formula3.png

Solution                     

Let's begin looking at the first way of dealing along with the evaluation step. We'll have to be careful with this method as there is a point in the procedure where if we aren't paying attention we'll obtain the wrong answer.

Solution 1 :

First we'll need to compute the indefinite integral using the substitution rule.  Note as well however, that we will continually remind ourselves that it is a definite integral by putting the limits on the integral at each of the step.  Without the limits it's simple to forget that we contained a definite integral while we've gotten the indefinite integral computed.

In this case the substitution is,

u = 1 - 4t 3                 du = -12t 2 dt                   ⇒    t 2 dt = - 1/12 du

Plugging this in the integral gives,

599_formula4.png

Notice as well that we didn't do the evaluation yet. It is where the potential problem arises along with this solution method. The limits specified here are from the original integral and therefore are values of t. We have u's in solution.  We can't plug values of t in for u.

Therefore, we will have to go back to t's before we carry out the substitution. It is the standard step in the substitution procedure, but it is frequently forgotten while doing definite integrals. Note that in this case, if we don't go back to t's we will have small problem in that one of the evaluations will end up giving us a complex number.

Therefore, finishing this problem gives,

776_formula5.png

                                  =-(1/9)-(-(1/9)(33)(3/2))

                                 = (1/9)-( 33√33)-1)

Therefore, that was the first solution method.  Let's see second method.

Solution 2 :

Note as well that this solution method isn't actually all that different from the first method.  In this method while doing substitutions we desire to eliminate all the t's in the integral & write everything in terms of u.

While we say all here we actually mean all.  In other terms, remember that limits on the integral are also values of t & we will convert the limits into u values.  Converting the limits is fairly simple since our substitution will tell us how to associate t and u so all we have to do is plug in the original t limits into the substitution & we'll get the new u limits.

Following is the substitution (it's the same as the first method) as well as the limit conversions.

u = 1 - 4t 3        du = -12t 2 dt       ⇒ t + dt = - 1/12 du

t = -2             ⇒      u = 1 - 4 ( -2)3  = 33

t = 0              ⇒       u = 1 - 4 (0)3  = 1

Now the integral is,

2376_formula8.png

As along with the first method let's pause here a moment to remind us what we're doing.  In this particular case, we've converted the limits to u's & we've also got our integral in terms of u's and therefore here we can just plug the limits directly into our integral.  Note as well that in this case we won't plug our substitution back in.  Doing it would cause problems as we would have t's in the integral and our limits would be u's.  Following is the rest of this problem.

We exactly got the similar answer & this time didn't have to worry about going back to t's in our answer.

Therefore, we've seen two solution techniques for calculating definite integrals which require the substitution rule.  Both are valid methods and each has their uses. We will be using the second completely however as it makes the evaluation step a little easier.


Related Discussions:- Evaluate the definite integral

Earth Day Bags, #question.I headed into Target in Webster, NY for an advert...

#question.I headed into Target in Webster, NY for an advertized free Earth Day Bag in (local newspaper and on your entrance store doors) and at 10:30 a.m. on Sunday, April 22nd, th

Naive regular perturbation of the form, Consider the equation e x 3 + ...

Consider the equation e x 3 + x 2 - x - 6 = 0, e > 0 (1) 1. Apply a naive regular perturbation of the form do derive a three-term approximation to the solutions

Differential equations, There isn't actually a whole lot to this section th...

There isn't actually a whole lot to this section this is mainly here thus we can get several basic concepts and definitions out of the way.  Most of the concepts and definitions in

Definition of vertical asymptote, Vertical asymptote Definition : The funct...

Vertical asymptote Definition : The function f(x) will contain a vertical asymptote at x = a if we contain any of the following limits at x = a .   x→a- Note as well that it

Math reasoning, The probability that a certain region in mexico will be hit...

The probability that a certain region in mexico will be hit by a hurricane in any given year is .06. What is the probability that the region will be hit by at least one hurricane i

Ellpsoid, different kind of ellipsoid

different kind of ellipsoid

Give the introduction to ratios and proportions, Give the introduction to R...

Give the introduction to Ratios and Proportions? A ratio represents a comparison between two values. A ratio of two numbers can be expressed in three ways: A ratio of "one t

HELP, WHAT TWO SIX DIDGIT NUMBERS CAN YOU ADD 984,357

WHAT TWO SIX DIDGIT NUMBERS CAN YOU ADD 984,357

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd