Direction cosines - vector, Mathematics

Assignment Help:

Direction Cosines

This application of the dot product needs that we be in three dimensional (3D) space not like all the other applications we have looked at to this point. 

Let us begin with a vector, a in three dimensional (3D) space.  This vector will make angles along with the x-axis (α), the y-axis (β), and the z-axis (γ).  These angles are known as direction angles and the cosines of these angles are known as direction cosines.

Here is a diagram of a vector and the direction angles.

1577_Direction Cosines - Vector.png

The formulas for the direction cosines are as follow:

cos α = a• i / ||a|| = a1 / ||a||

cos β = a • j / ||a|| = a2 / ||a||

cos γ = a • k / ||a|| = a3 / ||a||

where i, j, and k are the standard basis vectors.


Related Discussions:- Direction cosines - vector

Determine the fraction of the time, Ipswich has two ambulances. Ambulance 1...

Ipswich has two ambulances. Ambulance 1 is based at the local college and ambulance 2 is based downtown. If a request for an ambulance comes from the local college, the college-bas

Introduction to learning to count, INTRODUCTION : Most of us, when plannin...

INTRODUCTION : Most of us, when planning the first mathematical experience for three-year olds, think in terms of helping them memorise numbers from 1 to 20. We also teach them to

Parametric equations and polar coordinates, Parametric Equations and Polar ...

Parametric Equations and Polar Coordinates In this part we come across at parametric equations and polar coordinates. When the two subjects don't come out to have that much in

Precalculus help, tsunami equation A sin (b * t) + k what is b supposed t...

tsunami equation A sin (b * t) + k what is b supposed to be if t is time a is amplitude and k is average water level (not exact value of b just what is it)

rational nmber, every rational nmber is expressible either as a_________or...

every rational nmber is expressible either as a_________or as a____________decimal.

Exponent, base also called what

base also called what

Describe subtracting negative fractions, Describe Subtracting Negative Frac...

Describe Subtracting Negative Fractions? Subtracting two fractions, whether one is positive and one is negative, or whether they are both negative, is almost the same process a

Evalute right-hand limit, Evaluate following limits. Solution ...

Evaluate following limits. Solution Let's begin with the right-hand limit.  For this limit we have, x > 4  ⇒          4 - x 3   = 0      also, 4 - x → 0  as x → 4

Find the external surface area, A shuttlecock used for playing badminton ha...

A shuttlecock used for playing badminton has the shape of a frustum of a Cone mounted on a hemisphere.  The external diameters of the frustum are 5 cm and 2 cm, and the height of t

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd