Evaluate the convergence of the algorithms, Mathematics

Assignment Help:

Evaluate the convergence of the algorithms:

From the convergence proof of power method, LR and QR algorithm for the computation of eigenvalues we see that the easiest case to proof convergence of these algorithms is when all eigenvalues of a matrix are distinct and their absolute values are also distinct.

Conversely, it is not difficult to imagine that the convergence can be difficult to obtain when several eigenvalues have similar absolute values or in the case of repeated eigenvalue. In this project, we attempt to examine some of these more challenging cases.

Algorithmic Analysis

(a) Show that for any real valued matrix A, if a complex number is an eigenvalue, the complex conjugate μ must also be an eigenvalue.

(b) Consider a matrix A with a complex eigenvalue with non-zero imaginary part. Consider the Jornal canonical form of matrix A obtained via similarity transformation. What are the relationships between elementary Jordan blocks associated with and ?

(c) When using the power method or the LR or QR algorithm, can the algorithm converge to an upper-triangular matrix?

(d) Propose a possible approach to compute complex eigenvalues of a real valued matrix A.

Computer Implementation

(a) Implement LR and QR for computation of eigenvalues including algorithm to first transform the input matrix to a Henssenberg matrix.

(b) Validate the correctness of your implementation.

(c) Evaluate the convergence of the algorithms in the case of matrix with complex eigenvalue.


Related Discussions:- Evaluate the convergence of the algorithms

Actaap released item booklet april 2010 grade 8, what is the least number o...

what is the least number of faces and bases the paperweight could have?

Diagonals of a trapezium divide each other proportionally , Diagonals of a ...

Diagonals of a trapezium divide each other proportionally: Given : In trapezium ABCD , AB// DC R.T.P :AO/OC = BO/OD Construction: Draw the line PQ; parallel to AB or C

Understand the terms quotient and remainder, What other activities can you ...

What other activities can you suggest to help a child understand the terms 'quotient' and 'remainder'? Once children understand the concept and process of division, with enough

Explain similar figures in similarity, Explain Similar Figures in similarit...

Explain Similar Figures in similarity ? Similar figures are figures that have the same shape but not necessarily the same size, so the image of a figure is similar to the orig

Components of the vector - calculus, Components of the Vector We should...

Components of the Vector We should indicate that vectors are not restricted to two dimensional (2D) or three dimensional space (3D). Vectors can exist generally n-dimensional s

Revenue and profit functions, Now let's move onto the revenue & profit func...

Now let's move onto the revenue & profit functions. Demand function or the price function Firstly, let's assume that the price which some item can be sold at if there is

Co-prime positive integers, A group of 5 people are going to meet weekly at...

A group of 5 people are going to meet weekly at the library for 4 weeks. Every week, two people are selected at random to speak. Every person may speak in multiple weeks, but no pa

Devide polynomials, what is the quotient of 20x to the power of 2 y-16x y t...

what is the quotient of 20x to the power of 2 y-16x y to the power of 2+ 8xy and -8xy

Prove the parallelogram circumscribing a circle is rhombus, Prove that the ...

Prove that the parallelogram circumscribing a circle is rhombus. Ans   Given : ABCD is a parallelogram circumscribing a circle. To prove : - ABCD is a rhombus or AB

Vectors, calculate the vector LM given l(4,3),m(-1,2)

calculate the vector LM given l(4,3),m(-1,2)

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd