Evaluate the convergence of the algorithms, Mathematics

Assignment Help:

Evaluate the convergence of the algorithms:

From the convergence proof of power method, LR and QR algorithm for the computation of eigenvalues we see that the easiest case to proof convergence of these algorithms is when all eigenvalues of a matrix are distinct and their absolute values are also distinct.

Conversely, it is not difficult to imagine that the convergence can be difficult to obtain when several eigenvalues have similar absolute values or in the case of repeated eigenvalue. In this project, we attempt to examine some of these more challenging cases.

Algorithmic Analysis

(a) Show that for any real valued matrix A, if a complex number is an eigenvalue, the complex conjugate μ must also be an eigenvalue.

(b) Consider a matrix A with a complex eigenvalue with non-zero imaginary part. Consider the Jornal canonical form of matrix A obtained via similarity transformation. What are the relationships between elementary Jordan blocks associated with and ?

(c) When using the power method or the LR or QR algorithm, can the algorithm converge to an upper-triangular matrix?

(d) Propose a possible approach to compute complex eigenvalues of a real valued matrix A.

Computer Implementation

(a) Implement LR and QR for computation of eigenvalues including algorithm to first transform the input matrix to a Henssenberg matrix.

(b) Validate the correctness of your implementation.

(c) Evaluate the convergence of the algorithms in the case of matrix with complex eigenvalue.


Related Discussions:- Evaluate the convergence of the algorithms

Addition of unlike terms, In this case, the first point we have to re...

In this case, the first point we have to remember is that we do not get a single value when we add two or more terms which are unlike in nature. This certainly ob

Find the evaluation of angle, In parallelogram ABCD, ∠A = 5x + 2 and ∠C = 6...

In parallelogram ABCD, ∠A = 5x + 2 and ∠C = 6x - 4. Find the evaluation of ∠A. a. 32° b. 6° c. 84.7° d. 44° a. Opposite angles of a parallelogram are same in measu

Poisson mathematical properties, Poisson Mathematical Properties 1. Th...

Poisson Mathematical Properties 1. The expected or mean value = np = λ Whereas; n = Sample Size p = Probability of success 2. The variance = np = ? 3. Standard dev

Large samples, LARGE SAMPLES These are samples that have a sample size ...

LARGE SAMPLES These are samples that have a sample size greater than 30(that is n>30) (a)   Estimation of population mean Here we suppose that if we take a large sample

saxon math, what is the muttiplied number of mutttiplacation calle

what is the muttiplied number of mutttiplacation called

Explain polynomials, P OLYNOMIALS : It is  not  once  nor  twice  b...

P OLYNOMIALS : It is  not  once  nor  twice  but  times  without  number  that the  same ideas make  their  appearance in the  world. 1.  Find the value for K for which

Find out the mean time, 1 . The probability that a couple will have a child...

1 . The probability that a couple will have a child with black hair is 0.6. If this couple has 7 children what is (a) the probability that exactly 3 of these children have bl

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd