Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
There is one final topic that we need to address as far as solution sets go before leaving this section. Consider the following equation and inequality.
x2 + 1 = 0
x2 = 0
If we limit ourselves to just real solutions (that we won't always do) then there is no solution to the equation. Squaring x makes x greater than equal to zero, after that adding 1 onto i.e that the left side is guaranteed to be at least 1. In other terms, there is no real solution to this equation. For the similar basic reason there is no solution to the inequality. Squaring any real x makes it positive or zero and thus will never be negative.
We required a way to mention the fact that there are no solutions here. In solution set notation we say that the solution set is empty & denote it with the symbol : ∅ . This symbol is frequently called the empty set.
In the discussion of empty sets we supposed that were only looking for real solutions. Whereas i.e. what we will be doing for inequalities, we won't be limiting ourselves to real solutions with equations. Once we get around to solving out quadratic equations (x2 + 1 = 0) we will let solutions to be complex numbers & in the case looked at above there are complex solutions to x2 + 1 = 0 . If you don't know how to search these at this point i.e. fine we will be covering that material in some sections. At this point simply accept that x2 + 1 = 0 does have complex solutions.
Lastly, as noted above we won't be utilizing the solution set notation much in this course. This is a nice notation & does have some use on occasion especially for complicated solutions. Though, for the vast majority of the equations & inequalities which we will be looking at will have simple sufficient solution sets that it's just easier to write the solutions and let it go at that. Thus, that is what we will not be using the notation for our solution sets. Though, you have to be aware of the notation & know what it means.
Michael made 19 out of 30 free-throws this basketball season. Larry's freethrow average was 0.745 and Charles' was 0.81. John made 47 out of 86 free-throws. Who is the best free-th
ABCD is a trapezium AB parallel to DC prove square of AC - square of BCC= AB*
provide a real-world example or scenario that can be express as a relation that is not a function
cosx
Value of perfect information This relates to the amount that we would pay for an item of information such would enable us to forecast the exact conditions of the market and act
I need to upload my assignment
problem to understand an problem; f(X-2)=X+3 / X-4
Find out the area of the region enclosed by y = x 2 & y =√x . Solution Firstly, just what do we mean by "area enclosed by". This means that the region we're interested in
how do they solve log9 = ... 27
Write each of the given radicals in exponent form. Solution As illustrated in the last two parts of this example we have to be careful with parenthesis. While we
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd