Discontinuous integrand- integration techniques, Mathematics

Assignment Help:

Discontinuous Integrand- Integration Techniques

Here now we need to look at the second type of improper integrals that we will be looking at in this section.  These are integrals which have discontinuous integrands.  The procedure here is mainly the same with one subtle variation.  Here are the common cases that we'll look at for these integrals.

1.   If f (x) is continuous on the interval [a, b] and not continuous at x = b then,

41_Discontinuous Integrand- Integration Techniques 1.png

specified the limit exists and is finite.  Note also that we do need to make use of a left hand limit here as the interval of integration is completely on the left side of the upper limit.

2. Determine If f (x) is continuous on the interval (a, b) and not continuous at x = a then,

1794_Discontinuous Integrand- Integration Techniques 2.png

specified the limit exists and is finite.  In this case we need to make use of a right hand limit here as the interval of integration is completely on the right side of the lower limit.

3.   If f (x) is not continuous at x = c where a < c < b and  ∫ca f(x) dx and ∫bc f(x) dx are both convergent then,

ba f (x) dx

= ∫ ca f(x) dx + ∫ bc f(x) dx

 Since with the infinite interval case this needs BOTH of the integrals to be convergent in order for this integral to as well are convergent.  Determine if either of the two integrals is divergent then so is this integral.

4.   If f (x) is not continuous at x = a and x = b and if  ∫ca f(x) dx and ∫bc f(x) dx are both convergent then

ba f(x) dx = ∫ca f(x) dx + ∫bc f (x) dx

In which c is any number, once Again this needs BOTH of the integrals to be convergent in order for this integral to as well be convergent.


Related Discussions:- Discontinuous integrand- integration techniques

Shares and dividend, A man buys rs50 shares of a company paying 12% of divi...

A man buys rs50 shares of a company paying 12% of dividendat premium ofof rs10 find market value of 320 shares and profit%

Design a diagram by transformation, On a graph, design a diagram by transfo...

On a graph, design a diagram by transformation the given graph of f (x), -2 ≤ x ≤ 2. Briefly Define the other graphs in terms of f (x) and specify their domains. The diagram n

Saxon math, what is the are of a square that is 2 inches long and 2 inches...

what is the are of a square that is 2 inches long and 2 inches wide?

Bernoulli differential equations, In this case we are going to consider dif...

In this case we are going to consider differential equations in the form, y ′ +  p   ( x ) y =  q   ( x ) y n Here p(x) and q(x) are continuous functions in the

MATLAB, Program of "surface of revolution" in MATLAB

Program of "surface of revolution" in MATLAB

Close Figure, What is a close figure in plane?

What is a close figure in plane?

Basics of series - sequences and series, Series - The Basics That top...

Series - The Basics That topic is infinite series.  So just define what is an infinite series?  Well, let's start with a sequence {a n } ∞ n=1 (note the n=1 is for convenie

Tangent lines, Recall also which value of the derivative at a specific valu...

Recall also which value of the derivative at a specific value of t provides the slope of the tangent line to the graph of the function at that time, t. Thus, if for some time t the

Example of log rules, Example of Log Rules: Y = ½ gt 2 where g = 32 ...

Example of Log Rules: Y = ½ gt 2 where g = 32 Solution: y = 16 t 2 Find y for t = 10 using logs. log y = log 10     (16 t 2 ) log 10 y = log 10 16 + log 10

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd