Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Diffusion Capacitance
Diffusion capacitance is the capacitance because of transport of charge carriers among the two terminals of a device, for instance, the diffusion of carriers from anode to cathode in forward bias mode of a diode or from emitter to base (forward-biased junction in active region) for a transistor. In a semiconductor device along with a current flowing via it (for instance, an ongoing transport of charge by diffusion) at a specific moment there is essentially a number of charge in the procedure of transit via the device. If the applied voltage modifies to a different value and the current changes to a different value, a different amount of charge will be in transit in the new situations. The change in the amount of transiting charge divided by the change in the voltage that causing it is the diffusion capacitance. The adjective "diffusion" is employed because the original make use of this term was for junction diodes, in which the charge transport was through the diffusion mechanism.
To execute this notion quantitatively, at a specific moment in time let the voltage across the device be V. at present assume that the voltage changes with time slowly enough that at each moment the current is similar like the DC current that would flow at that voltage, say I = I(V) (the quasi static approximation). Assume further that the time to cross the device is the forward transit time TF. In this case the amount of charge in transit via the device at this specific moment, denoted Q, is given by
Q = I (V) τF.
Accordingly, the corresponding diffusion capacitance: Cdiff is
Cdiff = dQ /dV = (dI(V) / dV) TF
In the event the quasi-static approximation does not hold, i.e. for extremely fast voltage changes occurring in times shorter than the transit time τF, the equations governing time-dependent transport in the device have to be solved to find the charge in transit, for instance the Boltzmann equation.
.
Assume that an abrupt Si p-n junction with area 10-4 cm2 has NA=10 17 /cm 3 and ND=10 17 /cm 3 is working at room temperature. It is given that μ n = 700 cm 2 /v-s, μ P =250 cm
Explain the effect of impurity on the conductivity of a semiconductor. To form a semi-conductor conductive, a small amount of appropriate impurity is added. This is then termed
Q. Give the classification of oscillators. Discuss the frequency stability of oscillators. Oscillators are classified in the following different ways. 1. According to the wa
Write a short explanation of the principles of super-heterodyne receiver. It may help to use sample block diagram to state the process. Why is the production of the intermediate fr
1. For the flyback converter operating in the discontinuous "current" (flux) mode, derive an expression for the time at which the magnetizing current returns to zero. 2. A forwa
Explain the purpose of the I/O instructions IN and OUT. The IN instruction is used to move data from an I/O port into the accumulator. The OUT instruction is used to move d
Construction and working of calomel electrode
Condition Return Similar to conditional jump and call instructions there are conditional return instructions also based on various flags.
An abrupt silicon (n i = 10 10 cm -3 ) p-n junction consists of a p-type region containing 10 16 cm -3 acceptors and an n-type region containing 5 x 10 16 cm -3 donors. a)
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd