Diffusion capacitance, Electrical Engineering

Assignment Help:

Diffusion Capacitance

Diffusion capacitance is the capacitance because of transport of charge carriers among the two terminals of a device, for instance, the diffusion of carriers from anode to cathode in forward bias mode of a diode or from emitter to base (forward-biased junction in active region) for a transistor. In a semiconductor device along with a current flowing via it (for instance, an ongoing transport of charge by diffusion) at a specific moment there is essentially a number of charge in the procedure of transit via the device. If the applied voltage modifies to a different value and the current changes to a different value, a different amount of charge will be in transit in the new situations. The change in the amount of transiting charge divided by the change in the voltage that causing it is the diffusion capacitance. The adjective "diffusion" is employed because the original make use of this term was for junction diodes, in which the charge transport was through the diffusion mechanism.

To execute this notion quantitatively, at a specific moment in time let the voltage across the device be V. at present assume that the voltage changes with time slowly enough that at each moment the current is similar like the DC current that would flow at that voltage, say I = I(V) (the quasi static approximation). Assume further that the time to cross the device is the forward transit time TF. In this case the amount of charge in transit via the device at this specific moment, denoted Q, is given by

Q = I (V) τF.

Accordingly, the corresponding diffusion capacitance: Cdiff is

Cdiff = dQ /dV = (dI(V) / dV) TF

In the event the quasi-static approximation does not hold, i.e. for extremely fast voltage changes occurring in times shorter than the transit time τF, the equations governing time-dependent transport in the device have to be solved to find the charge in transit, for instance the Boltzmann equation.


Related Discussions:- Diffusion capacitance

Basic requirement of semiconductor laser, What is basic requirement of semi...

What is basic requirement of semiconductor laser? Draw its label diagram and explain its working with necessary theory. Write down the applications of semiconductor laser.

Sr flip-flop, SR FLIP-FLOP (SRFF) The symbol for the SRFF is shown in F...

SR FLIP-FLOP (SRFF) The symbol for the SRFF is shown in Figure (a), in which S stands for "set," R stands for "reset" on the input side, and there are two outputs, the normal o

Determine the base current, Q. A transistor has a base current i B = 25 µA...

Q. A transistor has a base current i B = 25 µA, α = 0.985, and negligible ICBO. Find β, iE, and i .

Distribution transformers, Distribution Transformers 1. Augmentation/...

Distribution Transformers 1. Augmentation/Addition of Distribution Transformers Distribution transformers have to be augmented by installing additional transformers or in

Working of bootstrap sweep circuit, analysis and detail working of bootstra...

analysis and detail working of bootstrap sweep circuit

Active-mode pnp transistors in circuits, Active-mode PNP transistors in cir...

Active-mode PNP transistors in circuits: In the figure, the arrows showing current point in the direction of conventional current - the flow of electrons is in the opposite di

Semiconductors, Why do potential barriers breaks when a breakdown voltage i...

Why do potential barriers breaks when a breakdown voltage is application to semiconductor

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd