Basic requirement of semiconductor laser, Electrical Engineering

Assignment Help:

 What is basic requirement of semiconductor laser? Draw its label diagram and explain its working with necessary theory. Write down the applications of semiconductor laser.                                                                                OR

Explain the term

(1)    Spontaneous emission

(2)    Optical pumping

Describe the construction and working of semiconductor laser. Describe various application lf semiconductor laser.

How do pumping and population inversion are achieved in a semi-conductor laser?  What are advantages of using hetrojunction   over homojunction in semi-conductor lasers ?

                                                                                  

What do you understand by population inversion? With help of energy level diagram explain how population inversion is achieved to He-Ne laser.

                                                                                   

Give the reasons for the following basic properties of a laser :

1.       High intensity

2.       High directionality

  

Ans.: Population inversion

Under ordinary conditions of thermal equilibrium the number of atoms in higher energy level is considerably smaller than the number in higher energy level so that there is very little stimulated emission compared to absorption. Hence under ordinary condition an incident photon is more likely to be absorbed rather than emission. Hence laser action will not take place. If, however, the larger number of atoms are made available in the higner energy level  than stimulated emission will take place easily. This process of achieving the larger number lf atoms in the higher energy level than the  lower energy level is known as population inversion. The term population inversion describes an assembly of atoms in which the majority are in energy levels above the ground state . Theprocess of achieving population inversion is known as "pumping" of atoms. Most commonly used methods are as follows : 1. Optical pumping (Used in Ruby Laser). 2. Electric discharge (Used in Helium-Neon Laser). 3. Inelastic-atom-atom collisions. 4. Direct conversion (Used in Semi-conductor Laser). 5. Chemical reaction (Used in CO2 Laser).

Helium-Neon Laser

Helium Neon Laser is a four-level laser and was built by Ali javan, W. Bennett and D. Herriot in 1961.

Construction : The schematic of a typical He-Ne laser is shown in fig. It consists of a long discharge tube of length about 50 cm and diameter 1 cm. The tube contains a mixture of about 10 parts of helium and 1 part of neon at a low pressure. At both ends of the tube are fitted optically plane and parallel mirrors, one of them being partially silvered. The spacing of the mirrors is equal to an integral number of half0wavelengths of the laser light. In discharge. An electric discharge is produced in the gas by means of electrodes outside the tube connected to a source of high-frequency alternation current.

Working : When the power is switched on, the electrons from the discharge collide with and "pump" the He and Ne atoms to metastable states 20.61 e V and 20.66 e V respectively above their ground states. Some of the excited He atoms transfer their energy to ground-state Ne atoms in collision, with the 0.05 e V of additional energy being provided by the kinetic energy of the atoms. Thus, the purpose of the He atoms is to help in achieving a population inversion in the Ne atoms. When an excited Ne atom passes, from the metastable state at 20.66 e V to an excited state of 18.70 e V, and it emits a photon of wavelength 6328 A. This photon travels through the gas-mixture, and if it is moving parallel to the axis of the tube is reflected back and forth by the mirror-ends until it stimulates an excited Ne and causes it to emit a fresh 6328 A. photon in phase with the stimulating photon. This stimulated transition from 20.66 e V level to 18.70 e Vlevel is the laser transition. This process is continued and when a beam of coherent radiation becomes sufficiently intense, a portion of it escapes through the partially silvered end. In He-Ne laser, the power needed for excitation is less than that in a three-level  laser. A He-Ne laser operates in continuous wave mode.

Semiconductor laser : Semiconductor laser has remarkably small size, exhibits high efficiency and can be operated at low temperatures. A semiconductor laser is made by forming a hunction between p-type and n-type materials. The basic mechanism includes, when the current is passed through this p-n junction diode in forward bias holes move from p-region to n-region and electrons move from n-region to p-region. These electrons and holes are recombined in the junction region and emit photons due to the transition of electrons from the conduction band to the valence band resultion in stimulated radiation coming from a very narrow region near the junction. As the applied current is gradually increased, a stage is reached when spontaneous emission changes into stimulated emission thereby laser beam is emitted. This process is enhanced by polishing the surfaces of the p-n junction to act as mirrors. Initially Ga-As junction diode has been used for emission of laser with a frequency. Later on p b-s, In etc. have been used for laser action. Presently, semiconductor laser is made of an active layer of gallium arsenide of thickness 0.2 microns. This is sandwiched in between a n-type Ga As Al layer as shown in figure. The resonant cavity is provided by polishing opposite faces of the Ga As crystal and the pumping occurs by applying the electric field. This type of laser beam has wavelengths range of 7000 A  - 25000 A. 


Related Discussions:- Basic requirement of semiconductor laser

Show capital asset pricing model, Q. Show Capital asset pricing model? ...

Q. Show Capital asset pricing model? This model was developed by the William F Sharpe ( 1990 Nobel prize winner in the economy ) and john linter in 1960. The model attempt to c

Electric machines, a shunt motor supplied at 230V rms runs at 900rev/min wh...

a shunt motor supplied at 230V rms runs at 900rev/min when the armature current is 30A.the resistance of the armature circuit is 0.4 ohms.find the armature input

Cross-subsidy and multi-year tariff - electricity policies, Cross-subsidy:...

Cross-subsidy: The policy gives clarity on determination of cross-subsidy and additional surcharges for open access to consumers and lays down a timeframe for rationalization

Explain ferrites suitability for high frequency application, Explain Suitab...

Explain Suitability of ferrites for high frequency application. Ferrites are extensively used in micro wave equipments and in computers. Ferrites are advantageous at high frequ

Homework, voice signal is measured at 3.21692v and resides in an interval f...

voice signal is measured at 3.21692v and resides in an interval from 3.20v to 3.30. How big is an interval? MAx possible voltage?

Determine dielectric materials are which type of materials, Dielectric mate...

Dielectric materials are (A) Insulating materials.        (B) Semiconducting materials. (C) Magnetic materials.         (D) Ferroelectric materials. Ans:

Find terminal line-to-neutral voltage of each phase winding, (a) A wye-conn...

(a) A wye-connected generator is to be designed to supply a 20-kV three-phase line. Find the terminal line-to-neutral voltage of each phase winding. (b) If the windings of the g

What do you mean by pinch off voltage, Q. What do you mean by Pinch off vol...

Q. What do you mean by Pinch off voltage? As the voltage Vds is increased from 0 to a few volts, the drain current will increase as  determined by Ohm's law and the plot of Id

Explain the working of a photo - transistor with a sketch, Q. Explain the w...

Q. Explain the working of a photo - transistor with a sketch A second optoelectronic device that conducts current when exposed to light is the PHOTOTRANSISTOR. A phototransisto

Define johnson counters to make simpler combinational logic, Define Johnson...

Define Johnson Counters to Make Simpler Combinational Logic? The ring counter technique able to be efficiently utilized to implement synchronous sequential circuits. A main pr

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd