Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Variation of Parameters
Notice there the differential equation,
y′′ + q (t) y′ + r (t) y = g (t)
Suppose that y1(t) and y2(t) are a fundamental set of solutions for
y′′ + q (t ) y′ + r (t ) y = 0
Depending on the problem and the person, some will determine the formula easier to notice and use, whereas others will determine the process used to find the formula easier. The illustrations in this section will be done using the formula.
Before proceeding along with a couple of illustrations let's first address the issues including the constants of integration which will arise out of the integrals. Placing in the constants of integration will provide the following.
The last quantity in the parenthesis is nothing more than the complementary solution along with c1 = - c and c2 = k and we identify that if we plug this in the differential equation this will simplify out to zero as this is the solution to the homogeneous differential equation. Conversely, these terms add nothing to the particular solution and thus we will go ahead and suppose that c = 0 and k = 0 in all the illustrations.
One last note before we proceed along with illustrations. Do not worry about that of your two solutions in the complementary solution is y1(t) and that one is y2(t). This doesn't matter. You will finds out the same answer no matter that one you select to be y1(t) and which one you choose to be y2(t).
Sketch the feasible region for the following set of constraints: 3y - 2x ≥ 0 y + 8x ≤ 53 y - 2x ≤ 2 x ≥ 3. Then find the maximum and minimum values of the objective
A door height is 6 feet and 6 inches and 36 inches wide. What is the widest piece of sheetrock that will ?t through the door? Round to the nearest inch. a. 114 in b. 86 in
Utilizes the definition of the limit to prove the given limit. Solution Let M > 0 be any number and we'll have to choose a δ > 0 so that, 1/ x 2 > M
A vertical post stands on a horizontal plane. The angle of elevation of the top is 60 o and that of a point x metre be the height of the post, then prove that x = 2 h/3 .
Mrs. Jones and Mr. Graham had the same amount of money at first. After Mrs. Jones bought a computer that cost $2,055, she had 1/4 as much money as Mr. Graham. How much money di
How do I solve logx/log2x=2
i want aasignment on this topic
Alternate Notation : Next we have to discuss some alternate notation for the derivative. The typical derivative notation is the "prime" notation. Though, there is another notation
Expected Value of Perfect Information In the above problems we have used the expected value criterion to evaluate the decisions under the conditions of risk. But, as long as un
Given two functions f(x) and g(x) which are differentiable on some interval I (1) If W (f,g) (x 0 ) ≠ 0 for some x 0 in I, so f(x) and g(x) are linearly independent on the int
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd