Differential equation to determine initial value problem, Mathematics

Assignment Help:

Solve the subsequent IVP.

cos(x) y' + sin(x) y = 2 cos3(x) sin(x) - 1

y(p/4) = 3√2, 0 < x< p/2

Solution:

Rewrite the differential equation to determine the coefficient of the derivative an individual.

y' + (sin(x)/cos(x))y = 2cos2 (x) sin(x) - 1/cos(x)

y' + tan(x)y = 2cos2 (x) sin(x) - sec(x)

Now determine the integrating factor:

1689_Differential equation to determine initial value problem.png

Can you do the integral? If not rewrite tangent back in sines and cosines and after that use a easy substitution. Remember that we could drop the absolute value bars upon the secant due to the limits on x.  Actually, this is the purpose for the limits on x.

Also remember that we made use of the subsequent fact.

eInf(x) = f(x)    .........................(11)

It is a significant fact that you must always keep in mind for these problems. We will want to make simpler the integrating factor as much as probable in each case and this fact will assist with which simplification.

Currently back to the illustration. Multiply the integrating factor by the differential equation and confirm the left side is a product rule. Notice also that we multiply the integrating factor by the rewritten differential equation and NOT the original differential equation. Ensure that you do that. If you multiply the integrating factor via the original differential equation you will find out the wrong solution!

sec(x) y' + sec(x) tan (x)y = 2sec(x) cos2(x) sin(x) - sec2(x)

(sec(x) y)' = 2cos(x) sin(x) -sec2(x)

Integrate both sides.

∫(sec(x) y)' dx = ∫(2cos(x) sin(x) -sec2(x)) dx

sec(x) y(x) = ∫ sin(2x) - sec2(x) dx

sec(x) y(x) = - ½  cos(2x) - tan(x) + c

See there the use of the trig formula sin (2q) = 2 sin q cosq resolve for the solution.

y(x) = - ½ cos(x) cos(2x) - cos(x) tan(x) + c cos(x)

= - ½ cos(x) cos(2x) - sin(x) + c cos(x)

At last, apply the initial condition to determine the value of c.

 

1146_Differential equation to determine initial value problem1.png

The solution is afterward as:

y(x) =  - ½ cos(x) cos(2x) - sin(x) + 7 cos(x)

A plot of the solution is here given below:

2202_Differential equation to determine initial value problem2.png


Related Discussions:- Differential equation to determine initial value problem

Elementary row operations to reduce the augmented matrix, Consider the syst...

Consider the system of linear equations X + ay = 1 2x + 8y = b Where a and b are real numbers. (a)  Write out the augmented matrix for this system of linear equations.

Term paper topics, please suggest me that how can i get the term papers top...

please suggest me that how can i get the term papers topics?

Find the length of the parallelogram, The perimeter of a parallelogram is 5...

The perimeter of a parallelogram is 50 cm. The length of the parallelogram is 5 cm more than the width. Find the length of the parallelogram. Let w = the width of the parallelo

Find least number of cables required to connect 100 computer, Find out the ...

Find out the least number of cables required to connect 100 computers to 20 printers to assurance that 20 computers can directly access 20 different printers.  Justify your answer.

Proof for properties of dot product, Proof for Properties of Dot Product ...

Proof for Properties of Dot Product Proof of u → • (v → + w → ) = u → • v → + u → • w → We'll begin with the three vectors, u → = (u 1 , u 2 , ...

Correlation and regression, Correlation and Regression Correlation ...

Correlation and Regression Correlation CORRELATION is an important statistical concept which refers to association or interrelationship among variables. The reasons of

Find probabilities for the standard normal distribution, Q. Find Probabilit...

Q. Find Probabilities for the Standard Normal Distribution? Ans. Suppose the history teacher decides to distribute the final grades of his class with a normal distribution

Interval of validity, The interval of validity for an IVP along with initia...

The interval of validity for an IVP along with initial conditions: y(t 0 ) = y 0 or/and y (k) (t 0 ) = y k There is the largest possible interval on that the solution is va

Revenue and profit functions, Now let's move onto the revenue & profit func...

Now let's move onto the revenue & profit functions. Demand function or the price function Firstly, let's assume that the price which some item can be sold at if there is

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd