Differential equation to determine initial value problem, Mathematics

Assignment Help:

Solve the subsequent IVP.

cos(x) y' + sin(x) y = 2 cos3(x) sin(x) - 1

y(p/4) = 3√2, 0 < x< p/2

Solution:

Rewrite the differential equation to determine the coefficient of the derivative an individual.

y' + (sin(x)/cos(x))y = 2cos2 (x) sin(x) - 1/cos(x)

y' + tan(x)y = 2cos2 (x) sin(x) - sec(x)

Now determine the integrating factor:

1689_Differential equation to determine initial value problem.png

Can you do the integral? If not rewrite tangent back in sines and cosines and after that use a easy substitution. Remember that we could drop the absolute value bars upon the secant due to the limits on x.  Actually, this is the purpose for the limits on x.

Also remember that we made use of the subsequent fact.

eInf(x) = f(x)    .........................(11)

It is a significant fact that you must always keep in mind for these problems. We will want to make simpler the integrating factor as much as probable in each case and this fact will assist with which simplification.

Currently back to the illustration. Multiply the integrating factor by the differential equation and confirm the left side is a product rule. Notice also that we multiply the integrating factor by the rewritten differential equation and NOT the original differential equation. Ensure that you do that. If you multiply the integrating factor via the original differential equation you will find out the wrong solution!

sec(x) y' + sec(x) tan (x)y = 2sec(x) cos2(x) sin(x) - sec2(x)

(sec(x) y)' = 2cos(x) sin(x) -sec2(x)

Integrate both sides.

∫(sec(x) y)' dx = ∫(2cos(x) sin(x) -sec2(x)) dx

sec(x) y(x) = ∫ sin(2x) - sec2(x) dx

sec(x) y(x) = - ½  cos(2x) - tan(x) + c

See there the use of the trig formula sin (2q) = 2 sin q cosq resolve for the solution.

y(x) = - ½ cos(x) cos(2x) - cos(x) tan(x) + c cos(x)

= - ½ cos(x) cos(2x) - sin(x) + c cos(x)

At last, apply the initial condition to determine the value of c.

 

1146_Differential equation to determine initial value problem1.png

The solution is afterward as:

y(x) =  - ½ cos(x) cos(2x) - sin(x) + 7 cos(x)

A plot of the solution is here given below:

2202_Differential equation to determine initial value problem2.png


Related Discussions:- Differential equation to determine initial value problem

Components of the vector - calculus, Components of the Vector We should...

Components of the Vector We should indicate that vectors are not restricted to two dimensional (2D) or three dimensional space (3D). Vectors can exist generally n-dimensional s

The parallelogram, love is a parallelogram where prove that love is a rect...

love is a parallelogram where prove that love is a rectangle

Statistic, Suppose that the probability of your favorite baseball player ge...

Suppose that the probability of your favorite baseball player getting a hit at bat is 0.45. Assume that each at bat is independent. What is the probability that he bats eight times

Geometry, How do you solve (17+w)^2 + w^2 = (25+w)^2

How do you solve (17+w)^2 + w^2 = (25+w)^2

Example of hcf, Example  Find the Highest Common Factor of 54, 72...

Example  Find the Highest Common Factor of 54, 72 and 150. First we consider 54 and 72. The HCF for these two quantities is calculated as follows:

#i need help on my math homework its on algabraitle.., The question is: If ...

The question is: If 0.2 x n = 1.4,what is the value of n.

Number theory, show that all primes except 2, are of the form 4n-1 or 4n+1...

show that all primes except 2, are of the form 4n-1 or 4n+1.

Inequalities, seven more than a number is less than or equal to -18

seven more than a number is less than or equal to -18

Complement of a set, Need solution For the universal set T = {1, 2, 3, 4...

Need solution For the universal set T = {1, 2, 3, 4, 5} and its subset A ={2, 3} and B ={5, } Find i) A 1 ii) (A 1 ) 1 iii) (B 1 ) 1

Fraction, 2 over 11 + 2 over 33

2 over 11 + 2 over 33

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd