Determine if following sequences are monotonic or bounded, Mathematics

Assignment Help:

Determine if the following sequences are monotonic and/or bounded.

(a)   {-n2}n=0

(b) {( -1)n+1}n=1

(c) {2/n2}n=5

Solution

{-n2}n=0

This sequence is a decreasing sequence (and therefore monotonic) because,

-n2 > - (n +1)2

for each n.

As well, since the sequence terms will be either zero or negative this type of sequence is bounded above. We can make use of any positive number or zero as the bound, M, though, it's standard to choose the smallest possible bound if we can and it is a nice number.  Thus, we'll choose M = 0 since,

-n2 ≤ 0 for every n

This type of sequence is not bounded below though as we can always get below any potential bound by taking n large enough. Hence, when the sequence is bounded above it is not bounded.

As a side note we can as well note that this sequence diverges (to -∞ if we want to be specific).

(b) {( -1)n+1}n=1

The sequence terms in this type of sequence alternate in between 1 and -1 and thus the sequence is neither a decreasing sequence nor increasing sequence. As the sequence is neither an increasing nor decreasing sequence it is not called as a monotonic sequence.

Though, the sequence is bounded since it is bounded above by 1 and bounded below by -1.

Once again, we can note that this sequence is as well divergent.

(c) {2/n2}n=5

The above sequence is a decreasing sequence and therefore monotonic since,

(2 / n2) > (2 / (n+1)2)

The terms in this sequence are all positive and thus it is bounded below by zero.  As well, since the sequence is a decreasing sequence the first sequence term will be the largest and thus we can see that the sequence will as well be bounded above by 2/25.  Hence, this sequence is bounded.

We can as well take a quick limit and note that this sequence converges and the limit of it is zero.


Related Discussions:- Determine if following sequences are monotonic or bounded

Determine the equation of the tangent line, Determine the equation of the t...

Determine the equation of the tangent line to r = 3 + 8 sinθ at θ = Π/6. Solution We'll first need the subsequent derivative. dr/dθ = 8 cosθ The formula for the deriv

The parallelogram, love is a parallelogram where prove that love is a rect...

love is a parallelogram where prove that love is a rectangle

Positive skewness-measure of central tendency, Positive Skewness - It ...

Positive Skewness - It is the tendency of a described frequency curve leaning towards the left. In a positively skewed distribution, the long tail extended to the right. In

Relative frequency definition, Relative Frequency  This type of probab...

Relative Frequency  This type of probability requires us to make some qualifications. We define probability of event A, occurring as the proportion of times A occurs, if we re

Find the value of x of an arithmetic progressions, Find the value of x if 2...

Find the value of x if 2x + 1, x 2 + x +1, 3 x 2 - 3 x +3 are consecutive terms of an AP. Ans:  a 2 -a 1 =  a 3 -a 2 ⇒   x 2 + x + 1-2 x - 1 = 3x 2 - 3x + 3- x

Operation research, Advantages and disadvantages of operation researchs

Advantages and disadvantages of operation researchs

Fundamental sets of solutions, The time has at last come to describe "nice ...

The time has at last come to describe "nice enough". We've been using this term during the last few sections to explain those solutions which could be used to form a general soluti

Types of relation, Relations in a Set: Let consider R be a relation fro...

Relations in a Set: Let consider R be a relation from A to B. If B = A, then R is known as a relation in A. Thus relation in a set A is a subset of A ΧA. Identity Relation:

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd