Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
It is desired to lessen the reflection of light by the outer surfaces of the objective lenses of a pair of binoculars. These surfaces are the foremost surfaces that light hits on entering the binoculars. The lenses are prepared of crown glass. To lessen the reflection the lenses should be coated with a transparent medium of the right thickness and of the right index of refraction. For utmost destructive interference of the reflected light the value of the index of refraction of the coating.
Answer:
Acceptable we want to put a quarter-wave thickness of optical coating on the lens to cause a path difference of half a wavelength consequently that we get destructive interference between the light path 1 light that reflects off the first interface (the air/coating interface) and the light path 2 light that reflects off the second interface (the coating/glass interface).
What we typically don't talk about in discussing thin-film interference is the amplitudes. However to get the most destructive interference where they do interfere we want the amplitudes to be the same. Then a crest of path 1 light is entirely cancelled by a trough of path 2 light. Now the bigger the dissimilarity between the indices of refraction of the two media on either side of an interface the greater the amount of reflection from that interface.
Presume we had the index of refraction of the coating exactly midway between that of air and that of the crown class. Additional suppose that 10% of the light is reflected off each surface. The value isn't important but the fact that both values are the same is reasonable since the difference ncoating-nair is under the given circumstances the same as the difference nglassncoating. If 10% is replicated off the first surface only 90% gets through. After that 10% of that 90% which is only 9% of the original intensity is reflected off the second surface and only 90% of that or 8.1% of the original intensity makes it back out through the first surface. Therefore where the light from the two paths joins together again back in the air after reflection we have 10% of the original intensity interfering with 8.1% of the original intensity consequently the cancellation will not be perfect (even if the coating is of the perfect thickness). If we reduce the index of refraction of the coating a little bit making it a little closer to the index of refraction of air we decrease the reflection at the first surface as well as increase the amount that gets through that surface and the percentage of that amount that is reflected off the second surface and then makes it back through the first surface. With the correct choice of the coating index of refraction extrapolating upon the given example we can bring that 10% down and the 8.1% up just enough to have them meet in the middle. If they are both equivalent we are able to get perfect destructive interference.
Therefore to maximize the destructive interference of the reflected light we need the index of refraction of the coating to be in between the nair and nglass, and we need it to be a little bit closer in value to nair than it is to nglass.
In an adiabatic process, the body neither absorbs heat nor does it refuse energy, i.e. in this phenomena there is no heat exchange (Δ Q = 0). Thus from first law of thermodynam
Define the cleaning effects of innovative proprietary ultrasonic technology. Additionally, the pollution particles are dispersed in the cleaning liquid. By this, a new adhesion
motion mean laws of motion explain explian motion lesson
A man pushes a couch a distance of 0.75 m. If 113 J of work is done. what is the magnitude of the horizontal force applied?
Give the conditions needed for production and observation of interference pattern?
Q. What is artificial radioactivity? The phenomenon by which still light elements are made radioactive by artificial or induced methods is called artificial radioactivity. α
what is the principle of tangent galvanometer?
application of direct and indirect trasition
the magnetic field at a dictance of 2cm from the axis of a straight conductor carrying current is 12mT.Find the currentin the conductor?
1. Krusty the Clown and Sideshow Bob have covered themselves in velcro, and shot themselves out of a large cannon so that they stick to a huge rotating velcro wheel (don't try this
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd