Derivatives of hyperbolic functions , Mathematics

Assignment Help:

Derivatives of Hyperbolic Functions : The last set of functions which we're going to be looking at is the hyperbolic functions.  In several physical situations combinations of ex and e- x arise fairly frequently.  Due to this these combinations are given names.  There are six hyperbolic functions & they are described as follows.

sinh x = ex - e- x/2                                   cosh x = e+ + e- x /2

tanh x = sinh x /cosh x                    coth x = cosh x /sinh x =1/tanh x

sech x =1/cosh x                                    csch x = 1/sinh x

Following are the graphs of the three main hyperbolic functions.

423_Derivatives of Hyperbolic Functions.png

We also contain the following facts regarding the hyperbolic functions.

sinh ( - x ) =- sinh ( x )                                        cosh ( - x ) = cosh ( x )

cosh 2 (x ) - sinh 2 ( x ) = 1                                        1 - tanh 2 ( x ) = sech 2 ( x )

You'll note as well that these are identical, but not quite the similar, to some of the more common trig identities so be careful to not confuse the identities here  along with those of the standard trig functions.

 

Since the hyperbolic functions are described in terms of exponential functions determining their derivatives are rather simple provided already. However we haven't thus we'll required the following formula.

                                                                 d (e- x )/ dx= -e- x

Along with this formula we'll do the derivative for hyperbolic sine

d (sinh x)/ dx   = d((ex - e- x  )/2)/ dx = ex -(- e- x ) /2 = (ex + e- x  )/2= cosh x

For the rest we can either utilizes the definition of the hyperbolic function and/or the quotient rule. Following are all six derivatives.

d (sinh x ) /dx = cosh x                                  d (cosh x ) / dx = sinh x

d ( tanh x ) /dx = sech 2 x                               d (coth x )/dx =-csch 2 x

d (sech x )/dx = -sech x tanh x                         d (csch x ) /dx= -csch x coth x


Related Discussions:- Derivatives of hyperbolic functions

Example of probability, Example of Probability: Example: By using...

Example of Probability: Example: By using a die, what is the probability of rolling two 3s in a row? Solution: From the previous example, there is a 1/6 chance of

Estimation of difference among two means, Estimation of difference among tw...

Estimation of difference among two means We know that the standard error of a sample is given by the value of the standard deviation (σ) divided by the square root of the numbe

#titlealgebra.., help solve these type equations.-4.1x=-4x+4.5

help solve these type equations.-4.1x=-4x+4.5

Two even digits , Find the number of six-digit positive integers that can b...

Find the number of six-digit positive integers that can be formed using the digits 1,2, 3, 4, and 5 (every of which may be repeated) if the number must start with two even digits o

Julie had $500 how much money did julie spend, Julie had $500. She spent 20...

Julie had $500. She spent 20% of it on clothes and then 25% of the remaining money on CDs. How much money did Julie spend? Find out 20% of $500 by multiplying $500 by the decim

Bounded intervals, Let a and b be fixed real numbers such that a ...

Let a and b be fixed real numbers such that a The open interval (a, b): We define an open interval (a, b) with end points a and b as a set of all r

Find out the determinant, Find out the determinant: Find out the deter...

Find out the determinant: Find out the determinant of the following 3 x 3 matrix, expanding about row 1. Solution:

Arithmetic/Geometric Sequences and Binomial Expansion, Find the 35th term o...

Find the 35th term of the sequence in which a1 = -10 and the common difference is 4.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd