Derivatives of hyperbolic functions , Mathematics

Assignment Help:

Derivatives of Hyperbolic Functions : The last set of functions which we're going to be looking at is the hyperbolic functions.  In several physical situations combinations of ex and e- x arise fairly frequently.  Due to this these combinations are given names.  There are six hyperbolic functions & they are described as follows.

sinh x = ex - e- x/2                                   cosh x = e+ + e- x /2

tanh x = sinh x /cosh x                    coth x = cosh x /sinh x =1/tanh x

sech x =1/cosh x                                    csch x = 1/sinh x

Following are the graphs of the three main hyperbolic functions.

423_Derivatives of Hyperbolic Functions.png

We also contain the following facts regarding the hyperbolic functions.

sinh ( - x ) =- sinh ( x )                                        cosh ( - x ) = cosh ( x )

cosh 2 (x ) - sinh 2 ( x ) = 1                                        1 - tanh 2 ( x ) = sech 2 ( x )

You'll note as well that these are identical, but not quite the similar, to some of the more common trig identities so be careful to not confuse the identities here  along with those of the standard trig functions.

 

Since the hyperbolic functions are described in terms of exponential functions determining their derivatives are rather simple provided already. However we haven't thus we'll required the following formula.

                                                                 d (e- x )/ dx= -e- x

Along with this formula we'll do the derivative for hyperbolic sine

d (sinh x)/ dx   = d((ex - e- x  )/2)/ dx = ex -(- e- x ) /2 = (ex + e- x  )/2= cosh x

For the rest we can either utilizes the definition of the hyperbolic function and/or the quotient rule. Following are all six derivatives.

d (sinh x ) /dx = cosh x                                  d (cosh x ) / dx = sinh x

d ( tanh x ) /dx = sech 2 x                               d (coth x )/dx =-csch 2 x

d (sech x )/dx = -sech x tanh x                         d (csch x ) /dx= -csch x coth x


Related Discussions:- Derivatives of hyperbolic functions

Homework, Euler''''s Constant (e) Approximate the number to the one hundred...

Euler''''s Constant (e) Approximate the number to the one hundredth, one ten-thousandths, and one one-hundred-millionth.

Find the length and breadth of the rectangle, The area of a rectangle gets ...

The area of a rectangle gets decreased by 8 m2, if its length  is decreased by 5 m and breadth increased by 3 m. If we enhance  the length by 3 m and breadth by 2 m, the area is en

Examples of linear equation, Examples of Linear Equation Please provid...

Examples of Linear Equation Please provide me some Examples of Linear Equation?

Limit problem, limit x-a/|x-a| equals x-a [a]a [b]0 [c]-a [d]none 0f these

limit x-a/|x-a| equals x-a [a]a [b]0 [c]-a [d]none 0f these

Evaluate the measure of the smallest angle, The calculation of the angles o...

The calculation of the angles of a triangle are shown by 2x + 15, x + 20 and 3x + 25. Evaluate the measure of the smallest angle within the triangle. a. 40° b. 85° c. 25°

Differential equation and laplace transform, 1. Solve the given differentia...

1. Solve the given differential equation, subject to the initial conditions: . x2y''-3xy'+4y = 0 . y(1) = 5, y'(1) = 3 2. Find two linearly independent power series soluti

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd