Derivatives of hyperbolic functions , Mathematics

Assignment Help:

Derivatives of Hyperbolic Functions : The last set of functions which we're going to be looking at is the hyperbolic functions.  In several physical situations combinations of ex and e- x arise fairly frequently.  Due to this these combinations are given names.  There are six hyperbolic functions & they are described as follows.

sinh x = ex - e- x/2                                   cosh x = e+ + e- x /2

tanh x = sinh x /cosh x                    coth x = cosh x /sinh x =1/tanh x

sech x =1/cosh x                                    csch x = 1/sinh x

Following are the graphs of the three main hyperbolic functions.

423_Derivatives of Hyperbolic Functions.png

We also contain the following facts regarding the hyperbolic functions.

sinh ( - x ) =- sinh ( x )                                        cosh ( - x ) = cosh ( x )

cosh 2 (x ) - sinh 2 ( x ) = 1                                        1 - tanh 2 ( x ) = sech 2 ( x )

You'll note as well that these are identical, but not quite the similar, to some of the more common trig identities so be careful to not confuse the identities here  along with those of the standard trig functions.

 

Since the hyperbolic functions are described in terms of exponential functions determining their derivatives are rather simple provided already. However we haven't thus we'll required the following formula.

                                                                 d (e- x )/ dx= -e- x

Along with this formula we'll do the derivative for hyperbolic sine

d (sinh x)/ dx   = d((ex - e- x  )/2)/ dx = ex -(- e- x ) /2 = (ex + e- x  )/2= cosh x

For the rest we can either utilizes the definition of the hyperbolic function and/or the quotient rule. Following are all six derivatives.

d (sinh x ) /dx = cosh x                                  d (cosh x ) / dx = sinh x

d ( tanh x ) /dx = sech 2 x                               d (coth x )/dx =-csch 2 x

d (sech x )/dx = -sech x tanh x                         d (csch x ) /dx= -csch x coth x


Related Discussions:- Derivatives of hyperbolic functions

Partial derivatives, So far we have considered differentiation of functions...

So far we have considered differentiation of functions of one independent variable. In many situations, we come across functions with more than one independent variable

Probability, an insurance salesman sells policies to 5 men, all of identica...

an insurance salesman sells policies to 5 men, all of identical age in good health. the probability that a man of this particular age will be alive 20 years hence is 2/3.Find the p

Derivative with polar coordinates - parametric equations, Derivative with P...

Derivative with Polar Coordinates dy/dx = (dr/dθ (sin θ) + r cos θ) / (dr/dθ (cosθ) - r sinθ) Note: Rather than trying to keep in mind this formula it would possibly be easi

Revenue and profit functions, Now let's move onto the revenue & profit func...

Now let's move onto the revenue & profit functions. Demand function or the price function Firstly, let's assume that the price which some item can be sold at if there is

Draw tangent graph y = tan ( x ), Graph y = tan ( x ). Solution In...

Graph y = tan ( x ). Solution In the case of tangent we need to be careful while plugging x's in since tangent doesn't present wherever cosine is zero (remember that tan x

Factor expressions involving large powers, Factor Expressions Involving Lar...

Factor Expressions Involving Large Powers, Radicals, and Trig Functions You can use substitution to factor expressions involving large powers, radicals, and trig functions

Evalute right-hand limit, Evaluate following limits. Solution ...

Evaluate following limits. Solution Let's begin with the right-hand limit.  For this limit we have, x > 4  ⇒          4 - x 3   = 0      also, 4 - x → 0  as x → 4

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd