Demonstrates that f ( x ) = 4 x5 + x3 + 7 x - 2 mean value, Mathematics

Assignment Help:

Demonstrates that f ( x ) = 4 x5 + x3 + 7 x - 2 has accurately one real root.

Solution

From basic Algebra principles we know that since f (x) is a 5th degree polynomial it will have five roots. What we have to prove here is that only one of those 5 is a real number & the other 4 has to be complex roots.

Firstly, we have to show that it does have at least one real root. To do this note that f (0) = -2 and that f (1) = 10 and thus we can see that f (0) <0 < f (1).  Now, because f (x) is a polynomial we know that this is continuous everywhere and therefore by the Intermediate Value Theorem there is a number c such that 0 < c < 1 and f (c ) < 0 .  In other terms f (x ) has at least one real root.

Now we need to show that this is actually the only real root. To do this we'll utilizes an argument which is called contradiction proof.  What we'll do is suppose that f (x) has two real roots at least.

It means that we can determine real numbers a and b (there might be more, however all we required for this particular argument is two) such that f ( a ) =f (b ) = 0 .  However if we do this then we know from Rolle's Theorem that there has to then be another number c such that

f ′ (c ) = 0 .

However it is a problem. The derivative of this function is,

f ′ ( x ) = 20x4 +3x2 + 7

Since even the exponents of the first two terms are we know that the first two terms will be greater than or equal to zero always and then we are going to add a positive number onto that and thus we can see that the smallest the derivative will ever be is 7 and this contradicts the statement above that says we ought to have a number c such that f ′ (c) = 0.

We attained these contradictory statements by supposing that f (x) has two roots at least.  Since this supposition leads to a contradiction the supposition has to be false and thus we can only have a single real root.

The cause for covering Rolle's Theorem is that it is required in the proof of the Mean Value Theorem. Following is the theorem.


Related Discussions:- Demonstrates that f ( x ) = 4 x5 + x3 + 7 x - 2 mean value

Area, find area of rectangles and triangles put together

find area of rectangles and triangles put together

Average cost function, Average cost function : Now let's turn our attentio...

Average cost function : Now let's turn our attention to the average cost function. If C ( x ) is the cost function for some of the  item then the average cost function is,

NUMERICAL PARTIAL DIFFERENTIAL EQUATIONS, Our objective is solve the follo...

Our objective is solve the following fourth-order BVP: (a(x)u'' )'' = f (x) u(0) = u(1)=0 u(0)' = u(1)'=0 (a) Give the variational formulation of the above BVP. (b) Describe the

Determine the area of the regular octagon, Determine the area of the regula...

Determine the area of the regular octagon with the following measurements. a. 224 square units b. 112 square units c. 84 square units d. 169 square units b. See

Determine the probability that is of low quality, 1) A local factory makes ...

1) A local factory makes sheets of plywood. Records are kept on the number of mild defects that occur on each sheet. Letting the random variable x represent the number of mild de

Two even digits , Find the number of six-digit positive integers that can b...

Find the number of six-digit positive integers that can be formed using the digits 1,2, 3, 4, and 5 (every of which may be repeated) if the number must start with two even digits o

Progressions, The sum of the series 1+1/2+1/4,..is

The sum of the series 1+1/2+1/4,..is

What is the formula to calculate area of rectangle, Charlie needs to know t...

Charlie needs to know the area of his property, that measures 120 ft through 150 ft. Which formula will he use? The area of a rectangle is length × width.

Determine probability , You are going on a road trip and you buy snack pack...

You are going on a road trip and you buy snack packs and three different kind of beverages.  You buy 7 Cokes, 5 Pepsis and 4 Dr. Peppers.  You pull out two beverages at random.  An

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd