Definition of higher order derivatives, Mathematics

Assignment Help:

Higher Order Derivatives : Let's begin this section with the given function.

                           f ( x ) = 5x3 - 3x2 + 10 x - 5

By this point we have to be able to differentiate this function without any problems.  Doing this we obtain,

                                                  f ′ ( x ) = 15x2 - 6 x + 10

Now, it is a function and thus it can be differentiated. Following is the notation that we'll utilize for that, as well as the derivative.

                                      f ′′ ( x ) = ( f ′ ( x ))′ = 30x - 6

This is called the second derivative and f ′ (x) is called the first derivative.

Again, thus it is a function we can differentiate it again.  It will be called the third derivative. Following is that derivative in addition to the notation for the third derivative.

                                                  f ′′′ ( x ) = ( f ′′ ( x ))′ = 30

Continuing, we can differentiate again. It is called, oddly sufficient, the fourth derivative. We're also going to be altering notation at this point. We can keep adding on primes, however that will get cumbersome after awhile.

f ( 4) ( x ) = ( f ′′′ ( x ))′ = 0

This procedure can continue however notice that we will acquire zero for all derivatives after this point. These derivatives lead us to the given fact regarding the differentiation of polynomials.

Fact : If p(x) refer for a polynomial of degree n (that means the largest exponent in the polynomial) then,

                                               P( k ) ( x ) = 0     for k ≥ n + 1

We will have to be careful along with the "non-prime" notation for derivatives.  Assume each of the following.

                                                f (2) ( x ) = f ′′ ( x )

                                                    f 2 (x ) = [ f ( x )]2

In the exponent the presence of parenthesis indicates differentiation whereas the absence of parenthesis denotes exponentiation.

Collectively the second, third, fourth, etc. derivatives are called as higher order derivatives.

Let's take a look at couple of examples of higher order derivatives.


Related Discussions:- Definition of higher order derivatives

Proof of constant times a function, Proof of Constant Times a Function: ...

Proof of Constant Times a Function: (cf(x))′ = cf ′(x) It is very easy property to prove using the definition given you a recall, we can factor a constant out of a limit. No

Find out primes of each denominator, Find out primes of each denominator: ...

Find out primes of each denominator: Add 1/15 and 7/10 Solution: Step 1:             Find out primes of each denominator. 15 = 5 x 3 10 = 5 x 2 Step 2:

Complementary addition model, E1) How is the 'comparison model' different...

E1) How is the 'comparison model' different from the 'complementary addition model'? E2) Create one word problem related to the children's world for each of the 4 models liste

Developing an understanidng of multiplication, DEVELOPING AN UNDERSTANIDNG ...

DEVELOPING AN UNDERSTANIDNG OF MULTIPLICATION :  The most important aspect of knowing multiplication is to understand what it means and where it is applied. It needs to be first i

Compute the essential matrix and epipolar lines , 1. In Figure there are th...

1. In Figure there are three cameras where the distance between the cameras is B, and all three cameras have the same focal length f. The disparity dL = x0 - xL, while the disparit

What was his weight within pounds and ounces, Justin weighed 8 lb 12 oz whi...

Justin weighed 8 lb 12 oz while he was born. At his two-week check-up, he had gained 8 ounces. What was his weight within pounds and ounces? There are 16 ounces within a pound.

Geometric applications to the cross product, Geometric Applications to the ...

Geometric Applications to the Cross Product There are a so many geometric applications to the cross product also.  Assume we have three vectors a → , b → and c → and we make

Mechanics, find the composition of the simple harmonic motion of the same p...

find the composition of the simple harmonic motion of the same period in the perpendicular directions

Invariant lines under transformation, What lines are invariant under the tr...

What lines are invariant under the transformation [(103)(01-4)(001)]? I do not know where to even begin to solve this. Please help!!

Sciencetific notations, how would you answer a question like this on here ...

how would you answer a question like this on here (8x10^5)

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd