Define a cyclic group, Mathematics

Assignment Help:

Question 1:

(a) Show that, for all sets A, B and C,

(i) (A ∩ B) c = Ac∩Bc.

(ii) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).

(iii) A - (B ∪ C) = (A - B) ∩ (A - C).

(b) Let f: X → Y be a function and Ai ⊂ X for i ∈ I. Show that

(i) f(∩Ai) _∪f(Ai).

(ii) f(∪Ai) = ∪f(Ai).

Question 2:

(a) Prove that the set G = {a + b√3 : a; b ∈ Z} forms an abelian group under ordinary addition.

(b) Let R be a relation in the set of all natural numbers N defined by " xRy if and only if x - y is divisible by 3." Show that R is an equivalence relation. Hence determine the equivalence classes of R.

Question 3:

(a)    A set G consists of ordered pairs (a, b) such that a, b are real numbers and a ≠ 0. An operation * is defined in G as follows

(a, b) * (c, d) = (ac, ad + b) where a, b, c, d are real numbers. Prove that the given set constitutes a non-abelian group for the given operation.

(b) Let (G,*) be a group. Prove the following:

(i) the identity element e is unique,

(ii) (a * b)-1 = b-1 * a-1 for a, b ∈ G.

Question 4:

(a) Prove that a non-empty subset H is a subgroup of (G,*) if and only if

(1) a, b ∈ H ) a* b ∈ H.

(2) a ∈ H ) a-1 ∈ H where a-1 is the inverse of a in G.

(b) Prove that the set Q+ of all positive rational numbers forms an abelian group for the operation * defined by a * b = ab/ 2.

Question 5:

(a) (i) Define a cyclic group.

(ii) Prove that any cyclic group is abelian.

(iii) The set G = {1,-1, I,-i} forms a cyclic group under multiplication of complex numbers.

  • State a generator of G and show how it generates each element of G.
  • Draw the Cayley table for G.

(b) Let H and K be two subgroups of a group G. Show that H ∩ K is a subgroup of G.

 


Related Discussions:- Define a cyclic group

Geometry , Solving for X in isosceles triangles

Solving for X in isosceles triangles

Trigonometry, If a+b+c = 3a , then cotB/2 cotC/2 is equal to

If a+b+c = 3a , then cotB/2 cotC/2 is equal to

John and charlie have a whole of 80 dollars he has x dollar, John and Charl...

John and Charlie have a whole of 80 dollars. John has x dollars. How much money does Charlie have? This problem translates to the expression 42 + (11 - 9) ÷ 2. Using order of o

Laplace transforms, As we saw in the previous section computing Laplace tra...

As we saw in the previous section computing Laplace transforms directly can be quite complex. Generally we just utilize a table of transforms when actually calculating Laplace tran

Math, how do you do algebra in 4th grade

how do you do algebra in 4th grade

How many ways can dvds be arranged on a shelf, How many ways can 4 DVDs be ...

How many ways can 4 DVDs be arranged on a shelf? Solution: There are 4 ways to choose the first DVD, 3 ways to choose the second, 2 ways to choose the third and 1 way to choo

Linear approximations, Linear Approximations In this section we will l...

Linear Approximations In this section we will look at an application not of derivatives but of the tangent line to a function. Certainly, to get the tangent line we do have to

Basic operations on fractions, A simple example of fraction would be ...

A simple example of fraction would be a rational number of the form p/q, where q ≠ 0. In fractions also we come across different types of them. The two fractions

Venn diagram, in a class of 55 students, 35 take english, 40 take french, a...

in a class of 55 students, 35 take english, 40 take french, and 5 take other languages.present this information in a venn diagam and determine how many students take both languages

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd