Define a cyclic group, Mathematics

Assignment Help:

Question 1:

(a) Show that, for all sets A, B and C,

(i) (A ∩ B) c = Ac∩Bc.

(ii) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).

(iii) A - (B ∪ C) = (A - B) ∩ (A - C).

(b) Let f: X → Y be a function and Ai ⊂ X for i ∈ I. Show that

(i) f(∩Ai) _∪f(Ai).

(ii) f(∪Ai) = ∪f(Ai).

Question 2:

(a) Prove that the set G = {a + b√3 : a; b ∈ Z} forms an abelian group under ordinary addition.

(b) Let R be a relation in the set of all natural numbers N defined by " xRy if and only if x - y is divisible by 3." Show that R is an equivalence relation. Hence determine the equivalence classes of R.

Question 3:

(a)    A set G consists of ordered pairs (a, b) such that a, b are real numbers and a ≠ 0. An operation * is defined in G as follows

(a, b) * (c, d) = (ac, ad + b) where a, b, c, d are real numbers. Prove that the given set constitutes a non-abelian group for the given operation.

(b) Let (G,*) be a group. Prove the following:

(i) the identity element e is unique,

(ii) (a * b)-1 = b-1 * a-1 for a, b ∈ G.

Question 4:

(a) Prove that a non-empty subset H is a subgroup of (G,*) if and only if

(1) a, b ∈ H ) a* b ∈ H.

(2) a ∈ H ) a-1 ∈ H where a-1 is the inverse of a in G.

(b) Prove that the set Q+ of all positive rational numbers forms an abelian group for the operation * defined by a * b = ab/ 2.

Question 5:

(a) (i) Define a cyclic group.

(ii) Prove that any cyclic group is abelian.

(iii) The set G = {1,-1, I,-i} forms a cyclic group under multiplication of complex numbers.

  • State a generator of G and show how it generates each element of G.
  • Draw the Cayley table for G.

(b) Let H and K be two subgroups of a group G. Show that H ∩ K is a subgroup of G.

 


Related Discussions:- Define a cyclic group

How to adding polynomials, How to Adding Polynomials? The numerical par...

How to Adding Polynomials? The numerical part of a monomial is called the coefficient. For example, the coefficient of 5x is 5. The coefficient of -7a 2 b 3 is -7. Like

Find the quadratic polynomial, Find the Quadratic polynomial whose sum and ...

Find the Quadratic polynomial whose sum and product of zeros are √2 + 1, 1/ √2 + 1 Ans:    sum = 2  √2 Product = 1 Q.P = X 2 - (sum) x + Product ∴ x 2 - (2 √2 )

Introduction to helping children learn mathematics, INTRODUCTION :  Do you...

INTRODUCTION :  Do you remember your school-going days, particularly your mathematics classes? What was it about those classes that made you like, or dislike, mathematics? In this

Determine the mean of given question, Q . Mrs. Cooper asked her math class ...

Q . Mrs. Cooper asked her math class to keep track of their own grade. Michael, one of the students, lost his assignments, but he remembered the grades of 6 out of 8 assignments:

Differentiate functions h (t ) = 2t5 + t2- 5 / t2 , Differentiate f...

Differentiate following functions.                       h (t ) = 2t 5 + t 2 - 5 / t 2 We can simplify this rational expression as follows.                       h (t )

MARKET TARGETING STATERGIES, A MANUFACTURING UNIT IS INTERESTED IN DEVELOPI...

A MANUFACTURING UNIT IS INTERESTED IN DEVELOPING A BENEFIT SEGMENTATION OF THE CAMERA MARKET. SUGGEST SOME MAJOR BENEFIT SEGMENT WITH MARKET TARGETING STRATEGIES?

Unit circle, Unit circle A circle centered at the origin with radius 1 ...

Unit circle A circle centered at the origin with radius 1 (i.e. this circle) is called as unit circle.  The unit circle is very useful in Trigonometry. (b) x 2 + ( y - 3) 2

Sums, what is 10 times 10 pls

what is 10 times 10 pls

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd