Construct a regular expression, Theory of Computation

Assignment Help:

Given any NFA A, we will construct a regular expression denoting L(A) by means of an expression graph, a generalization of NFA transition graphs in which the edges are labeled with regular expressions rather than just symbols in Σ∪{ε}. We will explain the algorithm using the example of Figure 1.

We begin by adding a new start state s and ?nal state f to the automaton and by extending it to include an edge between every state in Q∪{s} to every state in Q ∪ {f}, including self edges on states in Q. We then consolidate all the edges from a state i to a state j into a single edge, labeled with a regular expression that denotes the set of strings of length 1 or less leading directly from state i to state j in the original automaton. If there was no path directly from i to j in the original automaton the label is ∅. If there were multiple edges (or edges labeled with multiple symbols) the label is the ‘+' of the symbols on those edges (as in the edge from 2 to 1 in the example). There will be an edge from s labeled ε to the original start state and one labeled ∅ to every other state other than f. Similarly, there will be an edge labeled ε from each state in F in the original automaton to state f and one labeled ∅ from those in Q-F to f. The expression graph for the example automaton is given in the right hand side of the ?gure.

The idea, now, is to systematically eliminate the nodes of the transition graph, one at a time, by adding new edges that are equivalent to the paths through that state and then deleting the state and all its incident edges. In general, suppose we are working on eliminating node k. For each pair of states i and j (where i is neither k nor f and j is neither k nor s) there will be a path from i to j through k that looks like:

230_Construct a regular expression.png


Related Discussions:- Construct a regular expression

Automata, how to prove he extended transition function is derived from part...

how to prove he extended transition function is derived from part 2 and 3

Automata, automata of atm machine

automata of atm machine

Push down automata, Construct a PDA that accepts { x#y | x, y in {a, b}* su...

Construct a PDA that accepts { x#y | x, y in {a, b}* such that x ? y and xi = yi for some i, 1 = i = min(|x|, |y|) }. For your PDA to work correctly it will need to be non-determin

Strictly k-local automata, Strictly 2-local automata are based on lookup ta...

Strictly 2-local automata are based on lookup tables that are sets of 2-factors, the pairs of adjacent symbols which are permitted to occur in a word. To generalize, we extend the

Pendulum Swings, how many pendulum swings will it take to walk across the c...

how many pendulum swings will it take to walk across the classroom?

Generalization of the interpretation of local automata, The generalization ...

The generalization of the interpretation of strictly local automata as generators is similar, in some respects, to the generalization of Myhill graphs. Again, the set of possible s

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd