Construct a regular expression, Theory of Computation

Assignment Help:

Given any NFA A, we will construct a regular expression denoting L(A) by means of an expression graph, a generalization of NFA transition graphs in which the edges are labeled with regular expressions rather than just symbols in Σ∪{ε}. We will explain the algorithm using the example of Figure 1.

We begin by adding a new start state s and ?nal state f to the automaton and by extending it to include an edge between every state in Q∪{s} to every state in Q ∪ {f}, including self edges on states in Q. We then consolidate all the edges from a state i to a state j into a single edge, labeled with a regular expression that denotes the set of strings of length 1 or less leading directly from state i to state j in the original automaton. If there was no path directly from i to j in the original automaton the label is ∅. If there were multiple edges (or edges labeled with multiple symbols) the label is the ‘+' of the symbols on those edges (as in the edge from 2 to 1 in the example). There will be an edge from s labeled ε to the original start state and one labeled ∅ to every other state other than f. Similarly, there will be an edge labeled ε from each state in F in the original automaton to state f and one labeled ∅ from those in Q-F to f. The expression graph for the example automaton is given in the right hand side of the ?gure.

The idea, now, is to systematically eliminate the nodes of the transition graph, one at a time, by adding new edges that are equivalent to the paths through that state and then deleting the state and all its incident edges. In general, suppose we are working on eliminating node k. For each pair of states i and j (where i is neither k nor f and j is neither k nor s) there will be a path from i to j through k that looks like:

230_Construct a regular expression.png


Related Discussions:- Construct a regular expression

Turing machine, prove following function is turing computable? f(m)={m-2,if...

prove following function is turing computable? f(m)={m-2,if m>2, {1,if

Regular languages, LTO was the closure of LT under concatenation and Boolea...

LTO was the closure of LT under concatenation and Boolean operations which turned out to be identical to SF, the closure of the ?nite languages under union, concatenation and compl

Sketch an algorithm to recognize the language, First model: Computer has a ...

First model: Computer has a ?xed number of bits of storage. You will model this by limiting your program to a single ?xed-precision unsigned integer variable, e.g., a single one-by

Operations on strictly local languages, The class of Strictly Local Languag...

The class of Strictly Local Languages (in general) is closed under • intersection but is not closed under • union • complement • concatenation • Kleene- and positive

Mapping reducibility, Can you say that B is decidable? If you somehow know...

Can you say that B is decidable? If you somehow know that A is decidable, what can you say about B?

Qbasic, Ask question #Minimum 100 words accepte

Ask question #Minimum 100 words accepte

Decidability, examples of decidable problems

examples of decidable problems

Qbasic, Ask question #Minimum 100 words accepte

Ask question #Minimum 100 words accepte

Example of finite state automaton, The initial ID of the automaton given in...

The initial ID of the automaton given in Figure 3, running on input ‘aabbba' is (A, aabbba) The ID after the ?rst three transitions of the computation is (F, bba) The p

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd