Construct a regular expression, Theory of Computation

Assignment Help:

Given any NFA A, we will construct a regular expression denoting L(A) by means of an expression graph, a generalization of NFA transition graphs in which the edges are labeled with regular expressions rather than just symbols in Σ∪{ε}. We will explain the algorithm using the example of Figure 1.

We begin by adding a new start state s and ?nal state f to the automaton and by extending it to include an edge between every state in Q∪{s} to every state in Q ∪ {f}, including self edges on states in Q. We then consolidate all the edges from a state i to a state j into a single edge, labeled with a regular expression that denotes the set of strings of length 1 or less leading directly from state i to state j in the original automaton. If there was no path directly from i to j in the original automaton the label is ∅. If there were multiple edges (or edges labeled with multiple symbols) the label is the ‘+' of the symbols on those edges (as in the edge from 2 to 1 in the example). There will be an edge from s labeled ε to the original start state and one labeled ∅ to every other state other than f. Similarly, there will be an edge labeled ε from each state in F in the original automaton to state f and one labeled ∅ from those in Q-F to f. The expression graph for the example automaton is given in the right hand side of the ?gure.

The idea, now, is to systematically eliminate the nodes of the transition graph, one at a time, by adding new edges that are equivalent to the paths through that state and then deleting the state and all its incident edges. In general, suppose we are working on eliminating node k. For each pair of states i and j (where i is neither k nor f and j is neither k nor s) there will be a path from i to j through k that looks like:

230_Construct a regular expression.png


Related Discussions:- Construct a regular expression

Find regular grammar : a(a+b)*(ab*+ba*)b, Find the Regular Grammar for the ...

Find the Regular Grammar for the following Regular Expression:                    a(a+b)*(ab*+ba*)b.

Strictly k-local automata, Strictly 2-local automata are based on lookup ta...

Strictly 2-local automata are based on lookup tables that are sets of 2-factors, the pairs of adjacent symbols which are permitted to occur in a word. To generalize, we extend the

Turing machine, Design a turing machine to compute x + y (x,y > 0) with x a...

Design a turing machine to compute x + y (x,y > 0) with x an y in unary, seperated by a # (descrition and genereal idea is needed ... no need for all TM moves)

Non-determinism - recognizable language, Our DFAs are required to have exac...

Our DFAs are required to have exactly one edge incident from each state for each input symbol so there is a unique next state for every current state and input symbol. Thus, the ne

Computation of a dfa or nfa, Computation of a DFA or NFA without ε-transiti...

Computation of a DFA or NFA without ε-transitions An ID (q 1 ,w 1 ) computes (qn,wn) in A = (Q,Σ, T, q 0 , F) (in zero or more steps) if there is a sequence of IDs (q 1

Instantaneous description - recognizable language, De?nition (Instantaneous...

De?nition (Instantaneous Description) (for both DFAs and NFAs) An instantaneous description of A = (Q,Σ, δ, q 0 , F) , either a DFA or an NFA, is a pair h q ,w i ∈ Q×Σ*, where

Synthesis theorem, Kleene called this the Synthesis theorem because his (an...

Kleene called this the Synthesis theorem because his (and your) proof gives an effective procedure for synthesizing an automaton that recognizes the language denoted by any given r

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd