Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
In this project we will consider the control of a synchronous generator supplying electricity to the grid. We will focus on the problem of frequency stability. The frequency at which the generator rotates is directly proportional to the frequency of the currents and voltages in the power grid. Hence, keeping the rotational frequency constant is of fundamental importance to the correct operation of the grid. A simplied model to study the stability of a single generator connected to the grid is the so called swing equation given by:
In this model !s is the synchronous rotational velocity 2 50 rad/s. The constant D = 5 represents the damping induced by mechanical and electrical losses and the constant H has the value 4. The term Pm = 1=2 represents the mechanical power that is transformed by the generator into electrical power and the term U sin represents the electrical power and describes the eect the grid has on the generator. We will take U as the input since we can change its value by the voltage across the excitation coil in the generator's rotor.
A synchronous generator, when operating in steady state, maintains a constant angular velocity achieved by matching the supplied mechanical power Pm with the power lost through dissipation H (is) and the electrical power U sin . When a fault occurs and a transmission line is tripped (opened) there is a sudden change in the electrical power and some generators will accelerate while other generators will decelerate. Once the fault is cleared and the transmission line is re-closed, dierent generators will be rotating at dierent angular velocities and voltages and currents in the power grid will no longer be sinusoids with a frequency of 50 Hz.
The objective of this project is to design a controller that will resume the steady state operation of the generator at 50 Hz. Please justify all your answers including relevant plots if necessary.
Q. What are the different types and uses of delay line in CRO? OR Why is a delay line used in the vertical section of the oscilloscope? Sol. All electronic circui
The subsequent voltage-source multiplying DAC is to be utilized to convert the digital data stream "11" and "01" to an analog signal. It has 2-bit inputs and hence is capable of c
why we plot graph to find bandwidth is drawn b/w av/avmax v/s frequency not av v/s frequency?
a 400V 4-pole DC generator takes an armature current of 50A when rotating at 626 rpm. the armature circuit resistance is 0,25ohms. determine the generated emf. DOC
What is the impedance Z between terminals A and B of the networks shown below? Express your answers in polar form. Three voltages represented by v 1 (t)=100cosωt, v 2 (t)=7
Draw the circuit of transistor in the common base configuration. Draw the Active, saturation and cut-off region. List the characteristics of Ideal Op-Amp. Sketch the pin diagram
advantages and disadvantaages of superposition
the p.u. reactance of a 25 MVA, 13.2 kV alternator 0.5 p.u. On a base of 50 MVA and 13.8 KV the p.u. value shall be
equilizing connection
Olution of this assignment
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd