Compute the essential matrix and epipolar lines , Mathematics

Assignment Help:

1. In Figure there are three cameras where the distance between the cameras is B, and all three cameras have the same focal length f. The disparity dL = x0 - xL, while the disparity dR = xR - x0. Show that |dL| = |dR|. You should prove this relationship holds mathematically by using the appropriate equations.

6_mathamatical.png

2. Consider two points A and B in a simple stereo system. Point A projects to Al on the left image, and Ar on the right image. Similarly there is a point B which projects to Bl and Br. Consider the order of these two points in each image on their epipolar lines. There are two possibilities; either they ordered on the epipolar lines in the same order; for example they appear as Al, Bl and Ar Br, or they are in opposite order, such as Bl, Al and Ar,Br. Place the two 3d points A and B in two different locations in a simple stereo diagram which demonstrates these two possibilities. (Draw a different picture for each situation).

3. The equation of a simple stereo system is z = f T / d. In this question assume that f T = 1 which means that z = 1 / d. Assume that the only source of error in a simple stereo system is the error in estimating the disparity, and that this error is exactly one pixel, and it does not change with the actual disparity value. So if the stereo system says the disparity is 5 pixels it is really between 4 and 6 pixels. Similarly, if the stereo system says the disparity is 10 pixels then it is really between 9 and 11 pixels. The error in estimating Z at a given disparity d due to this one pixel error in estimating the disparity is called ErrorZ. For a given value of disparity d, this error is estimated by the formula FirstErrorZ (d pixels) = || z(d - 1) - z(d + 1)||. Compute FirstErrorZ (5 pixels), FirstErrorZ (10 pixels), and the ratio of the two, which is FirstErrorZ (5 pixels) /FirstErrorZ (10 pixels).

Repeat this entire process but now assume that the error in calculating the disparity is ½ pixel, so that SecondErrorZ (d pixels) = || z(d - 1/2) - z(d + 1/2)||. Again compute SecondErrorZ (5 pixels), SecondErrorZ (10 pixels). Now compute the ratio of the two, which is SecondErrorZ (5 pixels) /SecondErrorZ (10 pixels). Looking at this ratio you should hypothesize a relationship between error in Z and error in disparity which holds as the error in disparity (1,1/2,..) approaches zero. In other words, given a small fixed error in computing the disparity, how does the resulting error in computing Z change if the d disparity is cut in half. Verify that your hypothesis is true by computing the derivative of Z with respect to disparity d in the case where z = 1/d, which represents the change in depth over the change in disparity (in the limit as the change in disparity goes to zero). The theory should agree with the practice.

4. There is a simple stereo system with one camera placed above the other camera in the y direction (not the x direction is as usual) by a distance of b. In such a case there is no rotation between the cameras, only a translation by a vector T = [0,b,0]. First compute the essential matrix E in this case. You are given a point p1 in camera co-ordinates in the first image as (x1,y1,f), and a matching point p2 in the second image where p2 is (x2,y2,f). Write the equation of the epipolar line that contains the matching point p2 in camera co-ordinates in the second image. In this case you are given p1 and you have computed E, and you need to write the equation of the line that contains p2 (the free variables are x2,y2) using p1 and E as the fixed variables. Now repeat the entire process again for the case where T = [b,b,0] (a translation of 45 degrees to the right in the x,y plane), and finally where T = [0,0,b] (a translation straight ahead in the Z direction). For the particular case where p1 = (0, 1, f) what is the equation of the epipolar line for all three situations? And where

p1 = (1, 1, f) what is the equation of the epipolar line in these three situations? Draw the epipolar lines for all three cases, you just need to show the basic shape of the epipolar lines.


Related Discussions:- Compute the essential matrix and epipolar lines

Calculate the instantaneous rate of change of the volume, Assume that the a...

Assume that the amount of air in a balloon after t hours is specified by                                             V (t ) = t 3 - 6t 2 + 35 Calculate the instantaneous

Sketch the feasible region, Sketch the feasible region for the following se...

Sketch the feasible region for the following set of constraints: 3y - 2x  ≥ 0 y + 8x  ≤  53 y - 2x  ≤  2 x  ≥ 3. Then find the maximum and minimum values of the objective

Correlation and regression, Correlation and Regression CORRELATION is ...

Correlation and Regression CORRELATION is an important statistical concept which refers to association or interrelationship among variables. The reasons of studying correla

MATH HONORS, HOW DO YOU DO BAR DIAGRAMS ANDESTIMATE IT WITH PERCENTS

HOW DO YOU DO BAR DIAGRAMS ANDESTIMATE IT WITH PERCENTS

Write down the first few terms of the sequences, Write down the first few t...

Write down the first few terms of each of the subsequent sequences. 1. {n+1 / n 2 } ∞ n=1 2. {(-1)n+1 / 2n} ∞ n=0 3. {bn} ∞ n=1, where bn = nth digit of ? So

Method to solve binomials of second degree, In this part we look at a...

In this part we look at another method to obtain the factors of an expression. In the above you have seen that x 2 - 4x + 4 = (x - 2) 2 or (x - 2)(x - 2). If yo

They preferred comedies, A survey was done where a random sample of people ...

A survey was done where a random sample of people 18 and over were asked if they preferred comedies, dramas, or neither. The information gathered was broken down by age group and t

Standard basis vectors -application of scalar multiplication, Standard Basi...

Standard Basis Vectors Revisited In the preceding section we introduced the idea of standard basis vectors with no really discussing why they were significant.  We can now do

Determine and classify all critical points , Determine and classify all the...

Determine and classify all the critical points of the given function.  Described the intervals where function is increasing & decreasing. Solution: Firstly we'll require

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd