Compute pure strategy and mixed strategy equilibria of game, Game Theory

Assignment Help:

Ronaldo (Brazil) kicks a penalty against Casillas (Spain) in the 2006 World Cup nal. Sup- pose that Ronaldo can kick the ball to Casillas' upper left (UL), lower left (LL), upper right (UR) and lower right (LR) side. Casillas simultaneously decides whether to jump to his left (L), stay in the center (C), or jump to his right(R). Players do not care about the cost of jumping or kicking the ball to one side or the other. Ronaldo only cares about the probability of scoring and Casillas only about the probability of avoiding a goal.

Ronaldo sometimes misses the goal even if Casillas jumps to the other side. - The probability of scoring when Ronaldo kicks to Casillas' upper left is: 0.7 if Casillas jumps to the right, 0.5 if Casillas stays in the center and 0.5 if Casillas jumps to the left. - The probability of scoring when Ronaldo kicks to Casillas' lower left is: 0.9 if Casillas jumps to the right, 0.8 if Casillas stays in the center and 0.4 if Casillas jumps to the left. - The probability of scoring when Ronaldo kicks to Casillas' upper right is: 0.4 if Casillas jumps to the right, 0.8 if Casillas stays in the center and 1 if Casillas jumps to the left. - The probability of scoring when Ronaldo kicks to Casillas' lower right is: 0.3 if Casillas jumps to the right, 0.5 if Casillas stays in the center and 0.7 if Casillas jumps to the left.

(a) What are the strategies available for Ronaldo and Casillas?

(b) Write down the Normal form of this game (the bimatrix of strategies and payoffs).

(c) Compute all the pure strategy and mixed strategy equilibria of the game. Find the expected payoff of each player in each equilibrium.


Related Discussions:- Compute pure strategy and mixed strategy equilibria of game

Multiple nash equilibria, The following is a payoff matrix for a non-cooper...

The following is a payoff matrix for a non-cooperative simultaneous move game between 2 players. The payoffs are in the order (Player 1; Player 2): What is/are the Nash Equil

Game theory equilibrium exercise, Exercise 1 a) Pure strategy nash equi...

Exercise 1 a) Pure strategy nash equilibrium in this case is Not Buy, bad ( 0,0) as no one wants to deviate from this strategy. b) The player chooses buy in the first perio

Bayesian Cournot, Consider the Cournot duopoly model in which two firms, 1 ...

Consider the Cournot duopoly model in which two firms, 1 and 2, simultaneously choose the quantities they will sell in the market, q1 and q2. The price each receives for each unity

Rollback , Rollback (often referred to as backward induction) is an iterati...

Rollback (often referred to as backward induction) is an iterative method for solving finite in depth kind or sequential games. First, one determines the optimal strategy of the pl

NAsh equilibrium, Consider a game in which player 1 chooses rows, player 2 ...

Consider a game in which player 1 chooses rows, player 2 chooses columns and player 3 chooses matrices. Only Player 3''s payoffs are given below. Show that D is not a best response

Evolutionary game theory, Evolutionary game theory provides a dynamic frame...

Evolutionary game theory provides a dynamic framework for analyzing repeated interaction. Originally modeled when "natural models" of fitness, a population might contains folks gen

Auctions, what will be the best strategy for a bidder in an auction compris...

what will be the best strategy for a bidder in an auction comprised of four bidders?

Cournot, Nineteenth century French economist attributed with the introducti...

Nineteenth century French economist attributed with the introduction of the theory of profit maximizing producers. In his masterpiece, The Recherches, published in 1838, Cournot pr

Games with sequential moves:rollback equilibrium, Rollback shows that Boein...

Rollback shows that Boeing chooses peace over war if Airbus enters, so Airbus will enter. Rollback equilibrium entails Airbus playing “Enter” and Boeing playing “Peace if entry”; e

Full equilibrium strategy example, (a) A player wins if she takes the tota...

(a) A player wins if she takes the total to 100 and additions of any value from 1 through 10 are allowed. Thus, if you take the sum to 89, you are guaran- teed to win; your oppone

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd