Complex roots - second order differential equations, Mathematics

Assignment Help:

We will be looking at solutions to the differential equation, in this section

ay′′ + by′ + cy = 0

Wherein roots of the characteristic equation,

ar2 + br + c = 0

Those are complicated roots in the form,

r12 = λ + µi

Here, recall that we arrived at the characteristic equation through assuming that each solution to the differential equation will be of the type

y (t ) = ert

Plugging our two roots in the general form of the solution provides the subsequent solutions to the differential equation.

66_Complex Roots.png

Here, these two functions are "nice enough" for the form the general solution. We do have a problem though. As we started along with only real numbers in our differential equation we would like our solution to only include real numbers. The two solutions above are complicated and thus we would like to find our hands on a couple of solutions as "nice enough" obviously, which are real.

To do this we will require Euler's Formula.

eiq = cosq+ i sinq

A nice variant of Euler's Formula which we'll want is,

eiq = cos(-q) + i sin(-q) = cosq - i sin q

Currently, split up our two solutions into exponentials which only have real exponents and then exponentials which only have imaginary exponents. After that use Euler's formula, or its variant use to rewrite the second exponential as:

y1(t) = elt eiµt = elt (cos(µ t)) + i sin (µt))

Y2(t) = elt e-iµt = elt (cos(µ t)) - i sin (µt))

This doesn't remove the complex nature of the solutions, although this does put the two solutions in a form that we can remove the complex parts.

Recall from the fundamentals section which if two solutions are "nice enough" so any solution can be written like a combination of the two solutions.  Convertselyu,

y (t ) = c1 y1 (t ) + c2 y2 (t) will also be a solution.

By using this let's see that if we add the two solutions together we will attain.

y1(t) + Y2(t) = 2elt cos(µ t)

It is a real solution and just to remove the extraneous 2 let's divide everything through a 2.  It gives the first real solution which we're after.

µ (t) = ½ y1(t) + ½ y2 (t) = elt cos(µ t)

Notice there that this is just equal to taking

c1  = c2 = ½

Here, we can reach a second solution in a same manner. Here we subtract the two original solutions to find out.

y1(t) - Y2(t) = 2ielt sin(µ t)

On the surface which doesn't show to fix the problem as the solution is until now complex.  Though, upon learning that the two constants, c1 and c2 can be complex numbers so we can reach a real solution by dividing this through 2i. It is equal to taking,

c1 = 1/2i, c2 = -(1/2i)

Our second solution will after that be,

n (t) = (1/2i) y1(t) - ((1/2i) y2(t)) = elt sin (µt)

We here have two solutions as we'll leave this to you to verify that they are actually solutions to the differential equation.

µ(t) = elt cos (µt), and   n (t) = elt sin (µt)

This also turns out that these two solutions are "nice enough" to make a general solution.

Thus, if the roots of the characteristic equation occur to be, r12 = l+mI the differential equation is,

y(t) = c1 elt cos (µt)+ c elt sin (µt)


Related Discussions:- Complex roots - second order differential equations

Real analysis, .find lim sup Ek and liminf Ek of Ek=[(-(1/k),1] for k odd a...

.find lim sup Ek and liminf Ek of Ek=[(-(1/k),1] for k odd and liminf Ek=[(-1,(1/k)] for k even

Analyze the dynamic path of pork prices, A well-known simple model, applica...

A well-known simple model, applicable for analysing boom-bust cycles in agriculture, but extendable to analysing boom-bust cycles in many different areas of economics is the hog cy

Algebra, how do you solve quadratic equations by factoring?

how do you solve quadratic equations by factoring?

Functions, Question Solve the following functions for x (where x is a r...

Question Solve the following functions for x (where x is a real number). Leave your answers in exact form, that is, do not use a calculator, show all working. (a) 3 x 3 x2 3

Simplify compound fractions, A compound fraction is a fraction that has oth...

A compound fraction is a fraction that has other fractions inside its numerator or denominator. Here's an example: While compound fractions can look really hairy, they're r

Ratio, which ratio is largar. 1. 15:16 or 24:25

which ratio is largar. 1. 15:16 or 24:25

Area of a circle, There's a nice way to show why the expresion for the area...

There's a nice way to show why the expresion for the area of a circle of radius R is: Pi * R 2 . It has an comman relationship with the experation for the circumference of a

Quadratic equation, If roots of (x-p)(x-q) = c are a and b what will be th...

If roots of (x-p)(x-q) = c are a and b what will be the roots of (x-a)(x-b) = -c    please explain? Ans) (x-p)(x-q)=c x2-(p+q)x-c=0 hence,   a+b=p+q  and      a.b=pq-c

SHOPPERS`STOP, 3. How are Indian customers visiting Shoppers’ Stop any diff...

3. How are Indian customers visiting Shoppers’ Stop any different from customers of developed western countries? 4. How should Shoppers’ Stop develop its demand forecasts?

Find the sides of the two squares, The sum of areas of two squares is 468m ...

The sum of areas of two squares is 468m 2  If the difference of their perimeters is 24cm, find the sides of the two squares. Ans:    Let the side of the larger square be x .

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd