Complex roots - second order differential equations, Mathematics

Assignment Help:

We will be looking at solutions to the differential equation, in this section

ay′′ + by′ + cy = 0

Wherein roots of the characteristic equation,

ar2 + br + c = 0

Those are complicated roots in the form,

r12 = λ + µi

Here, recall that we arrived at the characteristic equation through assuming that each solution to the differential equation will be of the type

y (t ) = ert

Plugging our two roots in the general form of the solution provides the subsequent solutions to the differential equation.

66_Complex Roots.png

Here, these two functions are "nice enough" for the form the general solution. We do have a problem though. As we started along with only real numbers in our differential equation we would like our solution to only include real numbers. The two solutions above are complicated and thus we would like to find our hands on a couple of solutions as "nice enough" obviously, which are real.

To do this we will require Euler's Formula.

eiq = cosq+ i sinq

A nice variant of Euler's Formula which we'll want is,

eiq = cos(-q) + i sin(-q) = cosq - i sin q

Currently, split up our two solutions into exponentials which only have real exponents and then exponentials which only have imaginary exponents. After that use Euler's formula, or its variant use to rewrite the second exponential as:

y1(t) = elt eiµt = elt (cos(µ t)) + i sin (µt))

Y2(t) = elt e-iµt = elt (cos(µ t)) - i sin (µt))

This doesn't remove the complex nature of the solutions, although this does put the two solutions in a form that we can remove the complex parts.

Recall from the fundamentals section which if two solutions are "nice enough" so any solution can be written like a combination of the two solutions.  Convertselyu,

y (t ) = c1 y1 (t ) + c2 y2 (t) will also be a solution.

By using this let's see that if we add the two solutions together we will attain.

y1(t) + Y2(t) = 2elt cos(µ t)

It is a real solution and just to remove the extraneous 2 let's divide everything through a 2.  It gives the first real solution which we're after.

µ (t) = ½ y1(t) + ½ y2 (t) = elt cos(µ t)

Notice there that this is just equal to taking

c1  = c2 = ½

Here, we can reach a second solution in a same manner. Here we subtract the two original solutions to find out.

y1(t) - Y2(t) = 2ielt sin(µ t)

On the surface which doesn't show to fix the problem as the solution is until now complex.  Though, upon learning that the two constants, c1 and c2 can be complex numbers so we can reach a real solution by dividing this through 2i. It is equal to taking,

c1 = 1/2i, c2 = -(1/2i)

Our second solution will after that be,

n (t) = (1/2i) y1(t) - ((1/2i) y2(t)) = elt sin (µt)

We here have two solutions as we'll leave this to you to verify that they are actually solutions to the differential equation.

µ(t) = elt cos (µt), and   n (t) = elt sin (µt)

This also turns out that these two solutions are "nice enough" to make a general solution.

Thus, if the roots of the characteristic equation occur to be, r12 = l+mI the differential equation is,

y(t) = c1 elt cos (µt)+ c elt sin (µt)


Related Discussions:- Complex roots - second order differential equations

How to multiplying monomials, How to Multiplying Monomials? To multiply...

How to Multiplying Monomials? To multiply monomials: Step 1: Multiply the coefficients. Step 2: Multiply the like variables by adding their exponents. Step 3: Multiply ans

Tangents, two circle of radius of 2cm &3cm &diameter of 8cm dram common tan...

two circle of radius of 2cm &3cm &diameter of 8cm dram common tangent

the jetstream''s speed, A passenger jet took 3 hours to fly 1800 km in the...

A passenger jet took 3 hours to fly 1800 km in the direction of the jetstream. The return trip against the jetstream took four hours. What was the jet's speed in still air and the

Decomposing polygons to find area, find the area of this figure in square m...

find the area of this figure in square millimeter measure each segment to the nearest millmeter

Introduction to computers, What is a Computer? A computer is ...

What is a Computer? A computer is an electronic device which senses or accepts input data, performs operations or computations on the data in a pre-arranged sequence

Convert the points into cartesian and polar coordinates, Convert each of th...

Convert each of the following points into the specified coordinate system.  (a) (-4, 2 Π /3) into Cartesian coordinates. (b) (-1,-1) into polar coordinates.  Solution

Numeric patterns, Kelli calls her grandmother every month Kelli also calls ...

Kelli calls her grandmother every month Kelli also calls her cousin.If Kelli calls her cousin in January, how many calls will Kelli have made to her grandmother and her cousin by t

Measures of dispersion- measures of central tendency, Measures of Dispersio...

Measures of Dispersion - The measures of dispersion are extremely useful in statistical work since they indicate whether the rest of the data are scattered away from the mean

Point-slope form, The next special form of the line which we have to look a...

The next special form of the line which we have to look at is the point-slope form of the line. This form is extremely useful for writing the equation of any line.  If we know that

What is the connecticut sales tax on this item, Connecticut state sales tax...

Connecticut state sales tax is 6%. Lucy purchases a picture frame in which costs $10.50 What is the Connecticut sales tax on this item? Find out 6% of $10.50 by multiplying $10

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd