Complex numbers from the eigenvector and the eigenvalue, Mathematics

Assignment Help:

Complex numbers from the eigenvector and the eigenvalue.

Example1: Solve the following IVP.

2144_Complex numbers from the eigenvector and the eigenvalue.png

We first require the eigenvalues and eigenvectors for the given matrix.

1679_Complex numbers from the eigenvector and the eigenvalue1.png

= l2 + 27

l1,2 = + 3 √(3i)

Therefore, now that we have the eigenvalues recall which we only need to determine the eigenvector for one of the eigenvalues as we can determine the second eigenvector for free from the first eigenvector as:

l1 =  3 √(3i),

We have to to solve the subsequent system.

199_Complex numbers from the eigenvector and the eigenvalue2.png

By using the first equation we find,

(3 - 3 √(3i)) h1-  9h2 = 0,

h2 = 1/3 (1 - (√(3i))) h1

Therefore, the first eigenvector is,

144_Complex numbers from the eigenvector and the eigenvalue3.png

h1 = 3

While finding the eigenvectors during these cases ensures that the complex number appears in the numerator of any fractions as we'll require this in the numerator later on.  Also attempt to clear out any fractions by suitably picking the constant. It will make our life simple down the road.

 Here, the second eigenvector is,

585_Complex numbers from the eigenvector and the eigenvalue4.png

Though, as we will see we won't require this eigenvector.

The solution which we get from the first eigenvalue and eigenvector is,

452_Complex numbers from the eigenvector and the eigenvalue5.png

Therefore, as we can notice there are complex numbers in both the exponential and vector that we will require to get rid of in order to use that as a solution. Recall from the complex roots section of the second order differential equation section which we can use Euler's formula to find the complex number out of the exponential. Doing it, we get

2396_Complex numbers from the eigenvector and the eigenvalue6.png

The subsequent step is to multiply the cosines and sines in the vector.

61_Complex numbers from the eigenvector and the eigenvalue7.png

Here combine the terms along with an "i" in them and split such terms off from those terms that don't include an "i". Also factor the "i" out of that vector.

1030_Complex numbers from the eigenvector and the eigenvalue8.png

= u?(t) +v?(t)

Here, it can be demonstrated as u?(t) and v?(t)are two linearly independent solutions to the system of differential equations. It means that we can utilize them to form a general solution and both they are real solutions.

Therefore, the general solution to a system along with complex roots is,

x? (t) = c1u?(t) +c2v?(t)

Here u?(t) and v?(t)are found by writing the first solution as:

x? (t) = u?(t) + i v?(t)

For our system so, the general solution is,

1330_Complex numbers from the eigenvector and the eigenvalue9.png

We now require applying the initial condition to it to find the constants,

32_Complex numbers from the eigenvector and the eigenvalue10.png

This leads to the subsequent system of equations to be solved,

3c1 = 2;

c1 + √3c2 = -4;

By solving both equations we get:

c1 = (2/3) and c2 = (14/3√3)

The actual solution is, so,

557_Complex numbers from the eigenvector and the eigenvalue11.png


Related Discussions:- Complex numbers from the eigenvector and the eigenvalue

Objectives of learning to count, Objectives :  After studying this unit, y...

Objectives :  After studying this unit, you should be able to : 1.   explain the processes involved in counting; 2.   explain why the ability to recite number names is no in

Age problem, three years ago,Rica was thrice as old as dandy.Three years he...

three years ago,Rica was thrice as old as dandy.Three years hence,she will be twice as old.Find their present.

Three set problems, In a class,there are 174 students in form three,86 stud...

In a class,there are 174 students in form three,86 students play table tennis,84 play football and 94 play volleyball,30 play table tennis and volleyball,34 play volleyball and foo

Common graphs, Common Graphs : In this section we introduce common graph o...

Common Graphs : In this section we introduce common graph of many of the basic functions. They all are given below as a form of example Example   Graph y = - 2/5 x + 3 .

Ecercises, ne nje tabak letre me permasa 100cm dhe 55cm nje nxenes duhet te...

ne nje tabak letre me permasa 100cm dhe 55cm nje nxenes duhet te ndertoje nje kuboide me permasa 20cm,25cm,40cm. a mund ta realizoje kete, ne qofte se per prerjet dhe ngjitjet humb

Calculate the net amount and distance, 1. A train on the Bay Area Rapid Tra...

1. A train on the Bay Area Rapid Transit system has the ability to accelerate to 80 miles/hour in half a minute. A.   Express the acceleration in miles per hour per minute. B

Mod(z-25i)<15, Mod(Z-25i)   Sol) mod (Z-25i) means Z lies in the circumfer...

Mod(Z-25i)   Sol) mod (Z-25i) means Z lies in the circumference of the circle with (0,25) at its centre and radius less then 15. so difference in the max and min value of arg Z is

Measurement, into how many smaller part is each centimeter divided

into how many smaller part is each centimeter divided

What percent the girls surveyed said that area hockey sport, 450 girls were...

450 girls were surveyed about their favorite sport, 24% said in which basketball is their favorite sport, 13% said in which ice hockey is their favorite sport, and 41% said which s

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd