Complex numbers from the eigenvector and the eigenvalue, Mathematics

Assignment Help:

Complex numbers from the eigenvector and the eigenvalue.

Example1: Solve the following IVP.

2144_Complex numbers from the eigenvector and the eigenvalue.png

We first require the eigenvalues and eigenvectors for the given matrix.

1679_Complex numbers from the eigenvector and the eigenvalue1.png

= l2 + 27

l1,2 = + 3 √(3i)

Therefore, now that we have the eigenvalues recall which we only need to determine the eigenvector for one of the eigenvalues as we can determine the second eigenvector for free from the first eigenvector as:

l1 =  3 √(3i),

We have to to solve the subsequent system.

199_Complex numbers from the eigenvector and the eigenvalue2.png

By using the first equation we find,

(3 - 3 √(3i)) h1-  9h2 = 0,

h2 = 1/3 (1 - (√(3i))) h1

Therefore, the first eigenvector is,

144_Complex numbers from the eigenvector and the eigenvalue3.png

h1 = 3

While finding the eigenvectors during these cases ensures that the complex number appears in the numerator of any fractions as we'll require this in the numerator later on.  Also attempt to clear out any fractions by suitably picking the constant. It will make our life simple down the road.

 Here, the second eigenvector is,

585_Complex numbers from the eigenvector and the eigenvalue4.png

Though, as we will see we won't require this eigenvector.

The solution which we get from the first eigenvalue and eigenvector is,

452_Complex numbers from the eigenvector and the eigenvalue5.png

Therefore, as we can notice there are complex numbers in both the exponential and vector that we will require to get rid of in order to use that as a solution. Recall from the complex roots section of the second order differential equation section which we can use Euler's formula to find the complex number out of the exponential. Doing it, we get

2396_Complex numbers from the eigenvector and the eigenvalue6.png

The subsequent step is to multiply the cosines and sines in the vector.

61_Complex numbers from the eigenvector and the eigenvalue7.png

Here combine the terms along with an "i" in them and split such terms off from those terms that don't include an "i". Also factor the "i" out of that vector.

1030_Complex numbers from the eigenvector and the eigenvalue8.png

= u?(t) +v?(t)

Here, it can be demonstrated as u?(t) and v?(t)are two linearly independent solutions to the system of differential equations. It means that we can utilize them to form a general solution and both they are real solutions.

Therefore, the general solution to a system along with complex roots is,

x? (t) = c1u?(t) +c2v?(t)

Here u?(t) and v?(t)are found by writing the first solution as:

x? (t) = u?(t) + i v?(t)

For our system so, the general solution is,

1330_Complex numbers from the eigenvector and the eigenvalue9.png

We now require applying the initial condition to it to find the constants,

32_Complex numbers from the eigenvector and the eigenvalue10.png

This leads to the subsequent system of equations to be solved,

3c1 = 2;

c1 + √3c2 = -4;

By solving both equations we get:

c1 = (2/3) and c2 = (14/3√3)

The actual solution is, so,

557_Complex numbers from the eigenvector and the eigenvalue11.png


Related Discussions:- Complex numbers from the eigenvector and the eigenvalue

Trigonometry, explain the formular for finding trigonometry

explain the formular for finding trigonometry

Determine the area of the rectangle, Stuckeyburg is a very small town in ru...

Stuckeyburg is a very small town in rural America. Use the map to approximate the area of the town. a. 40 miles 2 b. 104 miles 2 c. 93.5 miles 2 d. 92 miles 2

What is the probability of tossing a head, Q. What is the probability of to...

Q. What is the probability of tossing a head? List the sample space for tossing a coin once. What is the probability of tossing a head? Solution:  If you tossed a coin once

Find the evaluation of angle, In parallelogram ABCD, ∠A = 5x + 2 and ∠C = 6...

In parallelogram ABCD, ∠A = 5x + 2 and ∠C = 6x - 4. Find the evaluation of ∠A. a. 32° b. 6° c. 84.7° d. 44° a. Opposite angles of a parallelogram are same in measu

Factorization, factorize the following algebraic expressions

factorize the following algebraic expressions

Linear independence and dependence, It is not the first time that we've loo...

It is not the first time that we've looked this topic. We also considered linear independence and linear dependence back while we were looking at second order differential equation

Chanllenge, a pizza driver delivered 27 pizzas in one night he delivered mo...

a pizza driver delivered 27 pizzas in one night he delivered more then one pizza to only one house . every other house he only delivered pizza to 18 houses . how many pizzas did he

I am bad at math, i dont know how to do probobility iam so bad at it

i dont know how to do probobility iam so bad at it

Completely factored polynomial, Factoring polynomials Factoring polynom...

Factoring polynomials Factoring polynomials is done in pretty much the similar manner.  We determine all of the terms which were multiplied together to obtain the given polynom

Linear algrebra, how do we solve multiple optimal solution

how do we solve multiple optimal solution

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd