Complex numbers from the eigenvector and the eigenvalue, Mathematics

Assignment Help:

Complex numbers from the eigenvector and the eigenvalue.

Example1: Solve the following IVP.

2144_Complex numbers from the eigenvector and the eigenvalue.png

We first require the eigenvalues and eigenvectors for the given matrix.

1679_Complex numbers from the eigenvector and the eigenvalue1.png

= l2 + 27

l1,2 = + 3 √(3i)

Therefore, now that we have the eigenvalues recall which we only need to determine the eigenvector for one of the eigenvalues as we can determine the second eigenvector for free from the first eigenvector as:

l1 =  3 √(3i),

We have to to solve the subsequent system.

199_Complex numbers from the eigenvector and the eigenvalue2.png

By using the first equation we find,

(3 - 3 √(3i)) h1-  9h2 = 0,

h2 = 1/3 (1 - (√(3i))) h1

Therefore, the first eigenvector is,

144_Complex numbers from the eigenvector and the eigenvalue3.png

h1 = 3

While finding the eigenvectors during these cases ensures that the complex number appears in the numerator of any fractions as we'll require this in the numerator later on.  Also attempt to clear out any fractions by suitably picking the constant. It will make our life simple down the road.

 Here, the second eigenvector is,

585_Complex numbers from the eigenvector and the eigenvalue4.png

Though, as we will see we won't require this eigenvector.

The solution which we get from the first eigenvalue and eigenvector is,

452_Complex numbers from the eigenvector and the eigenvalue5.png

Therefore, as we can notice there are complex numbers in both the exponential and vector that we will require to get rid of in order to use that as a solution. Recall from the complex roots section of the second order differential equation section which we can use Euler's formula to find the complex number out of the exponential. Doing it, we get

2396_Complex numbers from the eigenvector and the eigenvalue6.png

The subsequent step is to multiply the cosines and sines in the vector.

61_Complex numbers from the eigenvector and the eigenvalue7.png

Here combine the terms along with an "i" in them and split such terms off from those terms that don't include an "i". Also factor the "i" out of that vector.

1030_Complex numbers from the eigenvector and the eigenvalue8.png

= u?(t) +v?(t)

Here, it can be demonstrated as u?(t) and v?(t)are two linearly independent solutions to the system of differential equations. It means that we can utilize them to form a general solution and both they are real solutions.

Therefore, the general solution to a system along with complex roots is,

x? (t) = c1u?(t) +c2v?(t)

Here u?(t) and v?(t)are found by writing the first solution as:

x? (t) = u?(t) + i v?(t)

For our system so, the general solution is,

1330_Complex numbers from the eigenvector and the eigenvalue9.png

We now require applying the initial condition to it to find the constants,

32_Complex numbers from the eigenvector and the eigenvalue10.png

This leads to the subsequent system of equations to be solved,

3c1 = 2;

c1 + √3c2 = -4;

By solving both equations we get:

c1 = (2/3) and c2 = (14/3√3)

The actual solution is, so,

557_Complex numbers from the eigenvector and the eigenvalue11.png


Related Discussions:- Complex numbers from the eigenvector and the eigenvalue

Statistics and probability, STATISTICS AND PROBABILITY : Statistics  ar...

STATISTICS AND PROBABILITY : Statistics  are the  only  tools  by  which  an  opening  can  be  cut  through  the formidable  thicket  of difficulties  that bars the  path  of

Compute the value of the following limit, Compute the value of the followin...

Compute the value of the following limit. Solution: Notice as well that I did say estimate the value of the limit.  Again, we will not directly compute limits in this sec

Scaling and translation for equations, Q. Scaling and translation for equat...

Q. Scaling and translation for equations? Ans. If you have an equation in the form y= f(x) (if you're not familiar with functions, that just means having "y" on the left s

Solve 5x tan (8x ) =3x trig function, Solve 5x tan (8x ) =3x . Solution...

Solve 5x tan (8x ) =3x . Solution : Firstly, before we even begin solving we have to make one thing clear.  DO NOT CANCEL AN x FROM BOTH SIDES!!! Whereas this may appear like

Solutions to systems, Now that we've found some of the fundamentals out of ...

Now that we've found some of the fundamentals out of the way for systems of differential equations it's time to start thinking about how to solve a system of differential equations

Postage stamp problem, Explain Postage Stamp Problem solving tehcnique? Wha...

Explain Postage Stamp Problem solving tehcnique? What is Postage Stamp Problem?

Problem solving, Let E; F be 2 points in the plane, EF has length 1, and le...

Let E; F be 2 points in the plane, EF has length 1, and let N be a continuous curve from E to F. A chord of N is a straight line joining 2 points on N. Prove if 0 and N has no cho

Determine a particular solution to differential equation, Determine a parti...

Determine a particular solution for the subsequent differential equation. y′′ - 4 y′ -12 y = 3e5t + sin(2t) + te4t Solution This example is the purpose that we've been u

Examples of logarithms, Examples of logarithms: log 2   8 = 3         ...

Examples of logarithms: log 2   8 = 3                                            since    8 = 2 3 log 10   0.01 = -2                                    since    0.01 = 10

Solving decimal equations, The distance around a square photograph is 12.8 ...

The distance around a square photograph is 12.8 centimeters. What is the langth of each side of the fotograph?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd