Calculates partial sum of an integer, Data Structure & Algorithms

Assignment Help:

Now, consider a function that calculates partial sum of an integer n. int psum(int n)

{

int i, partial_sum;

partial_sum = 0;                                           /* Line 1 */

for (i = 1; i <= n; i++) {                                /* Line 2 */

partial_sum = partial_sum + i*i;            /* Line 3 */

}

return partial_sum;                                                 /* Line 4 */

}

This function returns the sum by i = 1 to n of i squared, which means p sum = 12 + 22+ 32

+ .............  + n2 .

Ø  As we ought to determine the running time for each of statement in this program, we ought to count the number of statements which are executed in this process. The code at line 1 & line 4 are one statement each. Actually the for loop on line 2 are 2n+2 statements:

  • i = 1; statement: simple assignment, therefore one statement.
  • i <= n; statement is executed once for each value of i from 1 to n+1 (until the condition becomes false). The statement is executed n+1 times.
  • i++ is executed once for each of execution of body of the loop. It is executed for n times.

Therefore, the sum is equal to 1+ (n+1) + n+1 = 2n+ 3 times.

In terms of big-O notation described above, this function is O (n), since if we choose c=3, then we notice that cn > 2n+3. As we have already illustrious earlier, big-O notation only provides a upper bound to the function, it is also O(nlog(n)) & O(n2), since n2 > nlog(n) > 2n+3. However, we will select the smallest function which describes the order of the function and it is O (n).

Through looking at the definition of Omega notation & Theta notation, it is also apparent that it is of Θ(n), and thus ?(n) too. Because if we select c=1, then we see that cn < 2n+3, therefore ?(n) . Since 2n+3 = O(n), & 2n+3 = ?(n), this  implies that 2n+3 = Θ(n) , too.

Again it is reiterated here that smaller order terms and constants may be avoided while describing asymptotic notation. For instance, if f(n) = 4n+6 rather than f(n) = 2n +3 in terms of big-O, ? and Θ, It does not modify the order of the function. The function f(n) = 4n+6 = O(n) (through choosing c appropriately as 5); 4n+6 = ?(n) (through choosing c = 1), and thus 4n+6 = Θ(n). The spirit of this analysis is that in these asymptotic notation, we may count a statement as one, and should not worry regarding their relative execution time that may based on several hardware and other implementation factors, as long as this is of the order of 1, that means O(1).


Related Discussions:- Calculates partial sum of an integer

Recursion, difference between recursion and iteration

difference between recursion and iteration

Objectives of algorithms, After learning this, you will be able to: u...

After learning this, you will be able to: understand the concept of algorithm; understand mathematical foundation underlying the analysis of algorithm; to understand se

Bubble sort, In this sorting algorithm, multiple swapping occurs in one pas...

In this sorting algorithm, multiple swapping occurs in one pass. Smaller elements move or 'bubble' up to the top of the list, so the name given to the algorithm. In this method,

Adjacency matrix of an undirected graph, 1) What will call a graph that hav...

1) What will call a graph that have no cycle? 2) Adjacency matrix of an undirected graph is------------- on main diagonal. 3) Represent the following graphs by adjacency matr

Implement an open hash table, In a chained hash table, each table entry is ...

In a chained hash table, each table entry is a pointer to a collection of elements. It can be any collection that supports insert, remove, and find, but is commonly a linked list.

Using array to execute the queue structure, Q. Using array to execute the q...

Q. Using array to execute the queue structure, write down an algorithm/program to (i) Insert an element in the queue. (ii) Delete an element from the queue.

Storing a sparse matrix in memory, Explain an efficient method of storing a...

Explain an efficient method of storing a sparse matrix in memory. Write a module to find the transpose of the sparse matrix stored in this way. A matrix which contains number o

Write an algorithm to measure daily temperatures, A geography class decide ...

A geography class decide to measure daily temperatures and hours of sunshine each day over a 12 month period (365 days) Write an algorithm, using a flowchart that inputs tempera

Algorithms, Data array A has data series from 1,000,000 to 1 with step size...

Data array A has data series from 1,000,000 to 1 with step size 1, which is in perfect decreasing order. Data array B has data series from 1 to 1,000,000, which is in random order.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd