Calculates partial sum of an integer, Data Structure & Algorithms

Assignment Help:

Now, consider a function that calculates partial sum of an integer n. int psum(int n)

{

int i, partial_sum;

partial_sum = 0;                                           /* Line 1 */

for (i = 1; i <= n; i++) {                                /* Line 2 */

partial_sum = partial_sum + i*i;            /* Line 3 */

}

return partial_sum;                                                 /* Line 4 */

}

This function returns the sum by i = 1 to n of i squared, which means p sum = 12 + 22+ 32

+ .............  + n2 .

Ø  As we ought to determine the running time for each of statement in this program, we ought to count the number of statements which are executed in this process. The code at line 1 & line 4 are one statement each. Actually the for loop on line 2 are 2n+2 statements:

  • i = 1; statement: simple assignment, therefore one statement.
  • i <= n; statement is executed once for each value of i from 1 to n+1 (until the condition becomes false). The statement is executed n+1 times.
  • i++ is executed once for each of execution of body of the loop. It is executed for n times.

Therefore, the sum is equal to 1+ (n+1) + n+1 = 2n+ 3 times.

In terms of big-O notation described above, this function is O (n), since if we choose c=3, then we notice that cn > 2n+3. As we have already illustrious earlier, big-O notation only provides a upper bound to the function, it is also O(nlog(n)) & O(n2), since n2 > nlog(n) > 2n+3. However, we will select the smallest function which describes the order of the function and it is O (n).

Through looking at the definition of Omega notation & Theta notation, it is also apparent that it is of Θ(n), and thus ?(n) too. Because if we select c=1, then we see that cn < 2n+3, therefore ?(n) . Since 2n+3 = O(n), & 2n+3 = ?(n), this  implies that 2n+3 = Θ(n) , too.

Again it is reiterated here that smaller order terms and constants may be avoided while describing asymptotic notation. For instance, if f(n) = 4n+6 rather than f(n) = 2n +3 in terms of big-O, ? and Θ, It does not modify the order of the function. The function f(n) = 4n+6 = O(n) (through choosing c appropriately as 5); 4n+6 = ?(n) (through choosing c = 1), and thus 4n+6 = Θ(n). The spirit of this analysis is that in these asymptotic notation, we may count a statement as one, and should not worry regarding their relative execution time that may based on several hardware and other implementation factors, as long as this is of the order of 1, that means O(1).


Related Discussions:- Calculates partial sum of an integer

Insertion of a node into a binary search tree, A binary search tree is cons...

A binary search tree is constructed through the repeated insertion of new nodes in a binary tree structure. Insertion has to maintain the order of the tree. The value to the lef

Pseudocodes, how to write a pseudo code using Kramer''s rule

how to write a pseudo code using Kramer''s rule

What is string, What is String Carrier set of the String ADT is the s...

What is String Carrier set of the String ADT is the set of all finite sequences of characters from some alphabet, including empty sequence (the empty string). Operations on s

Unification algorithm, i want to write code for unification algorithm with ...

i want to write code for unification algorithm with for pattern matching between two expression with out representing an expression as alist

What is a data structure, Question 1 What is a data structure? Discuss bri...

Question 1 What is a data structure? Discuss briefly on types of data structures Question 2 Explain the insertion and deletion operation of linked list in detail Question

Show that towers of hanoi is o (2n), Question 1 Discuss the advantages of ...

Question 1 Discuss the advantages of implementation checks preconditions Question 2 Write a ‘C' program to search for an item using binary search Question 3 Show that To

Explain merge sort, Question 1 Explain the use of algorithms in computing ...

Question 1 Explain the use of algorithms in computing Question 2 Explain time complexity and space complexity of an algorithm Question 3 Explain how you can analyz

Explain open addressing, Open addressing The easiest way to resolve a c...

Open addressing The easiest way to resolve a collision is to start with the hash address and do a sequential search by the table for an empty location.

Primitive data structure, Primitive Data Structure These are the basic ...

Primitive Data Structure These are the basic structure and are directly operated upon by the machine instructions. These in general have dissimilar representations on different

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd