Linked list implementation of a dequeue, Data Structure & Algorithms

Assignment Help:

Double ended queues are implemented along doubly linked lists.

A doubly link list can traverse in both of the directions as it contain two pointers namely left pointers and right pointers. The right pointer points to the next node at the right while the left pointer points to the previous node at the left.  Program 9 described the linked list implementation of a Dequeue.

Program 9 : Linked list implementation of a Dequeue

# include "stdio.h"

#define NULL 0

struct dq {

int info;

int *left;

int *right;

};

typedef struct dq *dqptr;

dqptr p, tp;

dqptr head;

dqptr tail;

main()

{

int choice, I, x;

dqptr n;

dqptr getnode();

printf("\n Enter 1: Start 2 : Insertion at Front 3 : Insertion at Rear 4: Delete at Front 5: Delete at Back");

while (1)

{

printf("\n 1: Start 2 : Add at Front 3 : Add at Back 4: Delete at Front 5: Delete at Back 6 : exit");

scanf("%d", &choice);

switch (choice)

{

case 1:

create_list();

break;

case 2:

eq_front();

break;

case 3:

eq_back();

break;

case 4:

dq_front();

break;

case 5:

 

dq_back();

break;

case 6 :

exit(6);

}

}

}

create_list()

{

int I, x;

dqptr t;

p = getnode();

tp = p;

p->left = getnode();

p->info = 10;

p_right = getnode();

return;

}

dqptr getnode()

{

p = (dqptr) malloc(sizeof(struct dq));

return p;

}

dq_empty(dq q)

{

return q->head = = NULL;

}

eq_front(dq q, void *info)

{

if (dq_empty(q))

q->head = q->tail = dcons(info, NULL, NULL);

else

{

q-> head -> left =dcons(info, NULL, NULL);

q->head -> left ->right = q->head;

q ->head = q->head ->left;

}

}

eq_back(dq q, void *info)

{

if (dq_empty(q))

q->head = q->tail = dcons(info, NULL, NULL)

else

{

q-> tail -> right =dcons(info, NULL, NULL);

q->tail -> right -> left = q->tail;

q ->tail  = q->tail ->right;

}

}

dq_front(dq q)

{

if dq is not empty

{

dq tp = q-> head;

void *info = tp -> info;

q ->head = q->head-> right;

free(tp);

if (q->head = = NULL)

q -> tail = NULL;

else

q -> head -> left = NULL;

return info;

}

}

dq_back(dq q)

{

if (q!=NULL)

{

dq tp = q-> tail;

*info = tp -> info;

q ->tail = q->tail-> left;

free(tp);

if (q->tail = = NULL)

q -> head = NULL;

else

q -> tail -> right = NULL;

return info;

}

}


Related Discussions:- Linked list implementation of a dequeue

Explain almost complete binary tree, Almost Complete Binary Tree :-A binary...

Almost Complete Binary Tree :-A binary tree of depth d is an almost whole binary tree if: 1.Any node and at level less than d-1 has two children. 2. for any node and in the tree wi

Accept a file and form a binary tree - huffman encoding, Huffman Encoding i...

Huffman Encoding is one of the very simple algorithms to compress data. Even though it is very old and simple , it is still widely used (eg : in few stages of JPEG, MPEG etc). In t

Bst created in pre- order, Q. Make a BST for the given sequence of numbe...

Q. Make a BST for the given sequence of numbers. 45,32,90,34,68,72,15,24,30,66,11,50,10 Traverse the BST formed in  Pre- order, Inorder and Postorder.

Optimization Methods, Optimal solution to the problem given below. Obtain t...

Optimal solution to the problem given below. Obtain the initial solution by VAM Ware houses Stores Availibility I II III IV A 5 1 3 3 34 B 3 3 5 4 15 C 6 4 4 3 12 D 4 –1 4 2 19 Re

Deletion of a node from an avl tree, For AVL trees the deletion algorithm i...

For AVL trees the deletion algorithm is a little more complicated as there are various extra steps involved in the deletion of node. If the node is not a leaf node, then it contain

Queue be represented by circular linked list, Q. Can a Queue be represented...

Q. Can a Queue be represented by circular linked list with only one pointer pointing to the tail of the queue? Substantiate your answer using an example. A n s . Yes a

linear-expected-time algorithm, Implement a linear-expected-time algorithm...

Implement a linear-expected-time algorithm for selecting the k th smallest element Algorithm description 1. If |S| = 1, then k = 1 and return the element in S as the an

How does an array differ from an ordinary variable, Normal 0 fa...

Normal 0 false false false EN-IN X-NONE X-NONE MicrosoftInternetExplorer4

Insertion of a key into a b-tree, Example: Insertion of a key 33 into a B-...

Example: Insertion of a key 33 into a B-Tree (w/split) Step 1: Search first node for key closet to 33. Key 30 was determined. Step 2: Node pointed through key 30, is se

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd